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ABSTRACT 
 

In this paper we describe the problem of polymer conformational stability and transitions in 
the framework of the so-called quantum decoherence theory. We propose a rather qualitative 
scenario yet bearing generality in the context of the quantum decoherence theory, enabling us to 
reproduce both, existence and stability of the polymers conformations, and the short time scales for 
the quantum-mechanical processes resulting effectively in the conformational transitions. The 
proposed model is qualitative yet providing us with the possibility to overcome the main obstacle in 
resolving the problem of (semi-)classically unreasonably long time necessary for the change of 
conformation of the polymers in a solution.  
 
1. INTRODUCTION 
 

The long standing problem of the polymer conformational transitions is an open issue of the 
cross-disciplinary research work and interest [1-4]. It is usually referred to as the Levinthal’s 
paradox with an emphasis on the substantial descrepancy between the phenomenological data and 
the theoretical background of the issue [5]. The original Levinthal’s analysis [5] has led to extensive 
search for the so-called „preferred pathways (trajectories)“ in the conformation space of a 
macromolecule. Recently, the problem is sharpened by the new appraoch that calls for the funnel-
like form of the conformation space [6], probably offering the possibility to overcome the 
Levinthal’s paradox. 

In this paper, we offer a new approach to the problem. Actually, we show that the fully 
quantum-mechanicalapproach within the so-called decoherence theory [7] offers both, existence 
and stability of the molecules conformations, and the rather fast decoherence-like transition 
between the different conformations. Within our approach, the the Levinthal’s paradox completely 
dissappears. 
 
2. THE PROBLEM 
 

In this section, we precisely outline the problem we are interested in. 
 
2.1 The Born-Openheimer approximation 
 

It is well-known that the Born-Oppenheimer adiabatic approximation establishes geometrical 
shape of a molecule. The atoms (atomic groups) constituting a molecule are imagined to be placed 
in the vertices of certain three-dimensional (3D) shape as illustrated in Fig. 2.1. 



                          
Fig. 2.1 The ammonia molecule geometric (pyramidal) shape/form 

 
At the zeroth approximation, the atoms (more precisely: atomic groups) sitting in the vertices 

are frozen - their oscillations arround the equilibrium positions being neglected. In reality, the 
atoms are rather quickly vibrating thus giving rise to the fast changes of the molecule’s shape, 
which, on average, is presented by the zeroth approximation shape. Yet, a word of caution is worth 
saying in this regard. 

The geometrical forms of the molecules should not be too literally understood/interpreted. 
Even in the zeroth approximation, the molecule’s shape is subject to the Heisenberg (position vs. 
momentum) uncertainty relation. However, the relative positions of the atoms are still well-defined 
variables. These variables’ quantum-mechanicalaverages justify the zeroth approximation as 
defined above. Fortunatelly enough, these relative positions can be „measured“ by the low energy 
particles. Bearing these subtleties in mind, one may consider the molecules effectively to bear the 
„definite“ geometrical shapes - as it is generally assumed in chemistry. 
  
2.2 The molecules conformations 
 

The larger molecules are always found in oriented states, which assume the definite 
geometrical form in the sense of  the preceding section. In the simplified terms, the larger molecules 
may be viewed as the 3D (semi-)classical clasters as presented in Fig. 2.2. 
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Fig. 2.2 A 3D claster (semi-)classically representing a molecule. The vertices are occupied by the 
atoms/atomic-groups, the straight lines representing the chemical valence-bonds. 

 
Actually, the explanation of the molecules’ optical activity originates from the assumption that 

the different geometrical forms of the molecules, being energetically different, necessarily give rise 
to different responses upon the external optical stimulus. More precisely: The relative distances as 
well as the valence-angles (cf. Fig. 2.2) between the adjacent atoms (atomic groups) are well-
defined variables of the molecules so much as they can be referred as to the molecules’ 
conformations. Furthermore, the different conformations of a molecule are mutually related by 
conformational transitions - the geometrical transformations keeping the mutual distances of the 
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atomic groups as well as the valence-angles ( iϑ ) as depicted above – allowing (semi-)classically for 
a succesion of local rotations of adjacent molecular segments over the preceding valence-bonds. 
While keeping the primary structure of the molecules, the coformational transformations effect in 
the different (bio)chemical 3D-structurally-dependent activitiy of the molecule subjected to the 
transformation. 

The experimental evidence [1-4] in this regard can be described (summarized) as follows: The 
molecules dissolved in a liquid are found both to bear as well as to maintain their geometrical 
shapes/forms - which refers to every single molecule in the liquid. Therefore, in a liquid, the 
molecules’ forms can be described by a statistical ensemble of shapes (conformations) generally 
depending on the parameters of the composite system „molecules +  liquid“ - such as the 
composition, temperature, viscosity etc. For the fixed parameters of the system, the above-
mentioned ensemble maintains its definition - which we here refer to as the stationary state: in 
general, the concentration of the molecules bearing a given shape (from the set of the possible 
conformations) is constant. In other words: If left intact, the ensemble will maintain its state. 
However, certain external actions can give rise to the change of the conformations of the molecules 
in the liquid [8]. Such external action can be described as the nonstationary process, which finally 
gives rise to the relaxation process eventually leading to the new stationary state of the system, with 
different concentrations of the conformations, including (possibly) appearance of the new ones. 

Therefore, in simplified terms, the evidence about the conformations can be described as 
follows: 
(i) A stationary state is initially defined by the molecules’ conformations (statistical) 

distribution/concentration, which remains intact as long as the stationary state is conserved, 
(ii) Certain external actions can distroy the stationary state, and can be characterized by the change 

of the composite system’s parameters, 
(iii) The external action eventually gives rise to the relaxation process, which, in turn, 
(iv) Gives rise to another stationary state, which is characterized by another conformation 

distribution/concentration. 
 

2.3 Levinthal’s paradox: A survey 
 

Due to the influence of the environment, the large molecules may change their conformations. 
According to Fig. 2.2, these changes can be viewed/interpreted as the externally induced 
deformations of the 3D molecular claster as presented in Fig. 2.3. For instance, the successive, local 
rotations can effect in change of the lattice shape. These conformational transformations keep both, 
the relative positions of the vertices as well as the angles characterizing the initial conformation. 

                        

1ϑ
2ϑ

3ϑ

α

                              
 

Fig. 2.3 Conformational transition by the (semi-)classical local rotation for the angle α  in the 3D molecular 
claster. Here, only the segment defined by the valence-angles 2,3ϑ  rotates over the preceding chemical 

valence-bond, coinciding with the axis of rotation. 
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Physically, the different conformations of a molecule are described by the different 

(conformational) energies ( -minima in Fig. 2.4) of the molecule [1-4]. Actually, even for the 
„frozen“ molecule (neglected vibrational degrees of freedom), the different conformations are 
ascribed the different energies. Denoting the conformation, 

( )V k

K , as the molecules variable, the 
molecular electronic energy dependence on K  can be qualitatively presented by Fig. 2.4. 
 

 
 

Fig. 2.4 The molecular electronic energy as a potential energy for the adiabatically decoupled 
(vibrational and) one-dimensional conformational system K. 

 
The horizontal axis refers (for simplicity) to the „position“ of one-dimensional „particle“ K - 

the configuration space of the system. The vertical axis refers to the conformational molecular 
electronic energy, , as a potential energy for the adiabatically decoupled (vibrational and) one-
dimensional conformational system K,  representing a value of the variable K. The local minima 
represent the (meta)stable conformations of a molecule with the following characteristic: the (one-
dimensional) particle sitting in vicinity of a local minimum is attracted towards the minimum, 
finally centering arround the bottom of the minimum (of a stable conformation). As a consequence, 
not every geometrically possible conformation may be taken by a molecule. Rather, only the 
conformations referring to the energetically preferrable shapes are allowed - as defined by the local 
minima in Fig. 2.4. Certainly, the continuous change of shape of the molecule follows the  
plot in K-space. Once centerred arround the bottom of a local mimimum, the particle does not have 
energy enough to change its position - unless it’s externally forced to do so. 

( )V k
k

( )V k

Therefore, the conformational change of a molecule can be (semi-)classically viewed as the 
continuous change of its geometrical shape originating from some initial  to the final 
conformation 

ik

fk  (in two-conformational example of Fig. 2.4). Being in vicinity of a local 
minimum, the one-dimensional particle presented in Fig. 2.4 will tend to reach the minimum. This 
(semi-)classical model gives a background for the experimentally verified findings about the large 
molecules conformations. Unfortunatelly, it immediately gives rise to the problem - the so-called 
Levinthal’s paradox [5]. 

Actually, as Levinthal emphasizes, the conformational transitions can be realized through a 
sequence of local rotations (cf. Fig. 2.3) eventually giving rise to another (energetically preferable) 
conformation. The core of the Levinthal’s paradox can be presented as follows: 

For certain large molecules, the number of the local rotations necessary for 
effecting the conformational change (e.g.  in Fig. 2.4) may be so large 
that the effective time necessary for completing the transformation becomes 
unreasonably long, thus making the whole procedure physically unrealistic a 
process. 

ik k→ f
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More precisely: Assuming 2n torsional angles of a n-residue protein, each  having three stabile 
rotational states, this yields 32n ≈ 10n possible conformations for the chain (even with rather gross 
underestimating). If a protein can explore new conformations in a random way, at the rate that 
single bond can rotate, it can find approximately 1013 conformations per seconds, which is here an 
overestimating. We can then calculate the time t(s) required for a protein to explore all the 
conformations available to it: t = 10n/1013. For a rather small protein of n = 100 residues, one 
obtains t = 1087 s, which is immensely more than the apparent age of the universe ("Levinthal 
paradox"). Yet, according to some experiments, proteins can fold to their native conformation in 
less than a few seconds [8]. It follows that conformational changes of proteins in solution, due to 
compositional, thermal, and other influences of the environment does not occur in a random way (as 
e.g. movements of gas particles) - but fold to their native conformation in some sort of ordered set 
of pathways in which the approach to the native state is accompanied by sharp increasing 
conformational stability - this being one of the most crucial questions in all life sciences. 

The Levinthal’s paradox raised the search for the preferred (ordered set of) pathways in K-
space. The core of the research work in this regard refers to this task essentially pointed out by 
Levinthal. However, some recent approaches shed some new light in this concern. 
 
2.4 Levinthal’s paradox: Revisited 
 

The new approach [6] (and references therein) goes beyond the concept of the preferred 
pathways. Actually, it refers to the details in the single molecule’s conformational transitions yet 
searching for the fast transitions. 

The approach calls for the speciffic funnel-structure of the more realistic multidimensional 
-hypersurface, that might provide the basis for fast conformational transitions. Actually, 

existence of the local funnel-like regions in -hypersurface is assumed, with the following main 
idea: The funnel-like shape restricts the set of the allowed trajectories (pathways) for the 
conformational change. The different trajectories should be stochastically taken by the different 
(single) molecules in the ensemble of molecules from the set of the possible trajectories in the 
restricted K-space.  

( )V k
( )V k

Essentially, this proposal relaxes the original idea about the preferred pathways, yet in an 
elaborate fashion. Unfortunately, this is still a qualitative (semi-)classical model requiring much 
research work yet to be done; it is therefore hard to predict the success of this approach. E.g., one 
may notice that this proposal does not substantially go beyond the standard “pathways” (semi-) 
classical approach to the issue, especially in its kinematical context1. 
 
3. NEW APPROACH: THE CLUE 
 

The Levinthal’s paradox emerges from the (semi-)classical picture of the molecules 
conformations defined in the K-space of the one-dimensional model of Fig. 2.4. Within this 
strategy, the particle bears a definite position  in every instant of time. Thus every conformational 
change can be represented by a „trajectory“ (path) in K-space, following the shape of . 

lk
( )V k

                                                 
1 The funnel-approach restricts the number of the possible pathways. Kinematically, it means that for  local rotations 
- no matter which path down the funnel has been taken by the molecule - there appears the constraint of small . This 
constraint comes from the spectroscopic data on the poorly dimensionally-sensitive dispersion laws of the internal 
quasiparticle excitations [9,10], which stem the same order of magnitude for the two time intervals, for the molecular 
conformational transition (

n
n

τ ), as well as for the (average) time of the local segmental rotations ( rτ ), while bearing 

lnτ τ=  in mind. Certainly, this might be a serious restriction, in principal, for the large molecules conformational 
transitions in the still (semi-)classical funnel approach. 
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Bearing this in mind, we speculate about the possible solution of the problem in the context of 
the following idea: 

To find the theoretical background allowing us to abandon the concept of the 
trajectory (the path)“ in K-space, 

in order to avoid the problems of the kinematical nature. Fortunatelly enough, there is a theory 
justifying this idea - quantum mechanics. Actually, in the full quantum-mechanical treatment, the 
one-dimensional particle K might be allowed the linear superpositions of the different „positions“, 
thus making the concept of the position (and consequently of „trajectory“) physically meaningless2. 

Prima facie, this approach may seem un-reasonable, since it should simultaneously provide 
both existence as well as maintenance of the (stable) conformations in the stationary state of the 
system, and the model for fast conformational transitions. Fortunatelly enough, there is a quantum-
mechanical theory meeting these criteria/requirements - the so-called decoherence theory [7]. 
Section 5 justifies this claim. In Section 4, we outline the fundamentals of the decoherence theory. 

Finally to this section, we answer the following question: 
Why should one believe in quantum-mechanical behaviour of the large 
molecules? After all, the (semi-)clasical approach seems perfectly to work for 
most purposes in chemistry. 

Our answer can be given in few steps. 
First, the molecules are ultimately quantum-mechanicalsystems. It is therefore per se 

interesting to investigate this approach to the issue. Second, the „border-line“ between the 
„quantum“ and „classical“ is a matter of extensive research science-wide [7]. Particularly, it means 
that experience with the (semi-)classical behaviour does not necessarily remove the possibility of 
purely quantum-mechanical behavior of the large molecules. Third, the recent experiments on the 
macromolecules (spatial) interferometry [11,12] directly addresses the following question: Under 
which circumstances, one may expect the quantum-mechanical behaviour of the mesoscopic 
systems, with the view to even much larger („macroscopic“) systems? To this end, the lesson is 
rather simple: Rejecting the quantum-mechanical behavior of large molecules is just a matter of 
stipulation, not yet a scientific truth - as much as we know to date. Fourth, there is a quantum- 
mechanical basis for the macromolecules individuality in a liquid (solution), thus giving rise to the 
(seemingly) (semi-)classical basis of the kinetic theory3 [13].  

Therefore, we conclude: 
The macromolecules dynamics in a solution is an interplay between the different 
(even mutually competing) processes that are only poorely known to date, some of 
them bearing quantum-mechanical origin. 

 
4. THE FUNDAMENTALS OF THE DECOHERENCE THEORY 
 
4.1 Terminology 
 

A word of caution is worth saying. Sometimes, some physically different processes/effects are 
mis-identified/mis-interpreted as „decoherence“. Below, we give precise definition of decoherece-
i.e. of the decoherence-induced superselection rules effect [14], which we refer to as 
„decoherence“. 

 

                                                 
2 To this end, one may use an analogy. E.g. in the interference experiments in optics, the concept of trajectory (of a 
particle traversing a slit in the diffraction grating) becomes meaningless - existence of trajectories vipes out the 
interference (diffraction) pattern on the screen. Interference is analogous to the coherent (quantum-mechanical) 
superpositions of the different “positions” in K-space. 
3 The individuality refers to distinguishing the particles in a liquid not yet compromising their quantum-mechanical 
behavior. 
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4.2 Open quantum systems 
 

Standard quantum-mechanical theory deals with the isolated quantum systems, whose 
dynamics is governed by Schrodinger equation. For such systems, the environment effectively plays 
the role of the external potential, which is an additive term of the system’s Hamiltonian. Needless to 
say, such dynamics is exactly reversible. On the other side, if the environment nontrivially acts on 
the system, such a system is referred to as the open quantum system: the interaction between the 
(open) system ( ) and its environment (S E ) changes also the state of the environment, thus 
effecting irreversibly dynamics of the system . S

The open system’s dynamics is crucially determined by the interaction in the composite 
system . Usually, for the composite system S E+ S E+ , one adopts validity of the Schrodinger 
equation. Then, the task is properly to describe the open system’s dynamics. Probably the best 
known examples of open systems are: The object of quantum measurement;  A quantum particle in 
Wilson chamber; Detection of a quantum particle on the screen. 

From the mathematical point of view, the distinction between the isolated and the open 
systems can be described as follows: 
(A) For the isolated systems, the effect of its environment is encapsulated by the „external 

potential“ (potential energy) of the particle, ( , ; , )Si Si Sj EkV x p a A
) ) ) ; ,Si Six p) )  denote the system’s 

degrees of freedom as well as their conjugate momenta, while ,Sj Eka A  represent the system’s 
and the environment’s parameters (such as the mass, electric charge, etc.), respectively. 
Needless to say, V

)
 is the „one-particle“ observable changing the states of the open system, not 

yet of the environment. 
(B) The interaction Hamiltonian intS EH H+ ≡

) )
 is a two-body observable, coupling the observables 

of both the system S  and environment E . The composite system’s Hamiltonian reads: 
intS E S EH H I I H H= ⊗ + ⊗ +

) ) ) ) ) )
,      (4.1) 

where the third term denotes the interaction energy, which is a „two-system“ observable 
changing, in general, the states of both  and S E . 

 
4.3 The task 
 

The central issue of quantum mechanics of open systems is calculating the open system’s 
dynamics. Let us by ( 0)S tρ =)  denote the open system’s initial state, while by ( 0E t )σ =) we denote 
the initial state of the environment. Then, by definition, the initial state of the composite systems 

 reads: S E+
( 0) ( 0S Et t )ρ σ= ⊗ =) ) .        (4.2) 

Then (4.1) gives uniquely rise to the unitary evolution operator U
)

 for the composite system, 
i.e. to the unitary dynamics of the composite system: 

( ) ( 0) ( 0) *S E S Et U t t Uρ ρ σ+ = = ⊗ =
) )) ) ) .      (4.3)  

Now, according to the general rules of quantum mechanics, the subsystem’s state is defined as: 
( ) ( )S E S Et tr tρ ρ +=) ) ,        (4.4) 

with „ “ denoting the „tracing out“ (integrating over) the environmental degrees of freedom. Etr
It is apparent that the interaction term intH

)
 is central to the open system’s dynamics. E.g., if 

one may write (in accordance with the above (A)): 
int 'S E S EH V I I V= ⊗ + ⊗
) ) ) ) )

,       (4.5) 
then the two subsystems evolve mutually independently in time: 

( ) ( ) ( )S E S Et t tρ ρ σ+ = ⊗) ) ) .       (4.6) 
However, for the non-trivial coupling of the observables of the two subsystems, one obtains 

(cf. the above point (B)) the correlations of states of the subsystems. 
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As to the decoherence theory, the most interesting is the situation in which the initial state of 
the system  is a „pure“ quantum state (an element of the system’s Hilbert state space), S

S
ψ : 

( 0)S S
tρ ψ ψ= =) .        (4.7) 

Writing  
iS

i
C

Si
ψ ϕ=∑ ,         (4.8) 

one may directly obtain: 
*

,
( 0)S i j i S

i j
t C C jρ ϕ ϕ= =∑) .      (4.9)  

with the non-zero off-diagonal ( ) terms of i ≠ j Sρ
) . 

One of the central findings of the decoherence theory is the observation that for certain special 
states (orthonormalized basis) { }i S

ϕ , the evolution in time effects in the loss of the off-diagonal 

terms of  Sρ
) . That is, one may write for the off-diagonal terms of Sρ

) : 
lim ( ) 0,t Sij t i jρ→∞ = ≠        (4.10) 

for the rather short time intervals of the order of Dτ -the decoherence time. 
More precisely: The matrix representation of  Sρ

)  in the basis { }i S
ϕ  - the „pointer basis“ - is 

of the quasi-diagonal form, thus giving rise to the effective superselection rules [14,15] for the open 
system that is described by the orthogonal decomposition  of the system’s Hilbert state: 

S
n

H ⊕=∑ nH .         (4.11) 

Physically, the environment influences the loss of coherence in the open system’s state, H , for 
the states belonging to the different subspaces ; nH 0,i jϕ ϕ =  if ', , 'i n j nH H n nϕ ϕ ∈ ≠ . ∈

 
4.4 The environment-induced decoherence 
 

The loss of the initial coherence can be presented as follows: 
2*

,

D
i j i j i i iS

i j i

C C Cτ
S

ϕ ϕ ⎯⎯→∑ ∑ ϕ ϕ ,     (4.12)..  

meaning that coherence between the states belonging to the different subspaces, , is effectively 
forbidden after the (rather very short [7,15]) time interval of the order of the decoherence time. 

nH

Alternatively, the decoherence effect can be described by the existence of the „pointer 
observable“, SΛ

)
, whose spectral form reads [14,15]: 

S n
n

PλΛ =∑ Sn

) )
,        (4.13) 

where the projectors SnP
)

 are in one-to-one correspondence with the subspaces  (appearing in 
(4.11)). This observable is the center of algebra of the observables of the open system , while 
fulfilling the commutator relation [14-16]: 

nH
S

int , S EH I⎡ Λ ⊗ =⎣ 0⎤⎦
) ) )

.        (4.14) 
 

4.5 The physical contents 
 

The decoherence effect is a striking effect: Effectively, there is the loss of coherence in the 
open system’s state space. This restricts both the states and the observables of the open system that 
can be observed by an independent observer [7]. 

The lack of coherence is exactly what is expected from a macroscopic (a classical) system, 
which is subject to the classical determinism and reality. Actually, for the macroscopic systems, one 
may say that coherent superpositions of the type (4.8) have never been observed. Paradigmatic in 
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this concern are the macroscopic „center-of-mass“ coordinates of a macroscopic body/object. This 
is the reason the decoherence effect is sometimes considered as the main candidate for finding out 
the solution to the problem of the transition from „quantum to classical“ [7,15]. To this end, the 
„pointer basis“ as well as the „pointer observable“ are considered to bear the macroscopic 
characteristics of an open quantum system. 

Also crucial is the following observation: relative to intH
)

, the elements of a „pointer basis“ 
(which is also an eigenbasis of SΛ

)
) are robust [15,16]. Physically, it means that, once effected, the 

decoherence will keep the states of a „pointer basis“ effectively intact in the course of the unitary 
evolution of the composite system . This robustness of certain system’s states is crucial for 
the macroscopic context of the decoherence theory. Particularly, it means that the decoherence 
effect gives rise to both, existence as well as to maintenance of states of a „pointer basis“ - i.e. the 
relevance of the superselection rules - of an open system in the course of the unitary evolution of 
the combined system 

S E+

S E+ . In other words, the decoherence effect tends to freeze the open 
system’s dynamics as defined by the decomposition (4.11). The decoherence time Dτ  is usually 
very short, including the mesoscopic systems such as certain macromolecules [12]. It is therefore 
not for surprise that the decoherence effect has been observed in the quite controlled circumstances 
only recently [12,17,18]. 

Finally, in principle, certain external actions on the composite system can effect in breaking 
the superselection rules, i.e. of the decoherence effect. Actually, for certain interactions with 
another external system 'E , if one may write: 

int' , 0S EH I⎡ Λ ⊗ ≠⎣ ⎤⎦
) ) )

,         (4.15) 

there might appear the coherent superpositions of states from the pointer basis. E.g., if  int'H
)

 is 
such that: (i) it dominates in the system, and (ii) it defines another decomposition in 
contradistinction with (4.11), then one may obtain another „pointer basis“, { }i S

χ , such that: 

j ij SS
i

d iχ ϕ=∑ .        (4.16) 

In the macroscopic considerations, the possibility of such an effect is generally neglected. 
However, this need not be the case for the mesoscopic systems, such as the macromolecules. 

 
5. NEW APPROACH 
 

Formally, we deal with the one dimensional system ( ), S ( ),S SK P
) )

, where SK
)

 stands for the 

“coordinate” conformation, while the momentum SP
)

 satisfies: 

, /S SK P ih 2π⎡ ⎤ =⎣ ⎦
) )

.        (5.1) 
However, the system  is an open system - as distinguished in Section 2. It unavoidably 

interacts with its environment, which physically consists of the (liquid’s) molecules. Therefore, the 
system of interest is the composite system “conformation + liquid (S+E)”. 

S

In this section, we address the following tasks: 
(a) To establish existence and maintenance of  an ensemble of conformations in the stationary 

state of the composite system, where the conformations i S
k  satisfy: 

S i i iS
K k k k=

S

)
;        (5.2) 

(b) To model the conformation change, i f S
k→ , from the set of the allowed conformations. 

S
k

Physically, the task (b) refers to the non-stationary state of the composite system that is 
induced by the external action (point (ii) of Section 2.2). Prima facie, these two tasks might seem 
formidable. Fortunately enough, there is a quantum-mechanical theory fulfilling these tasks - the 
decoherence theory. 
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5.1  The conformation stability 
  

The composite system  is formally defined by the Hamiltonian of the form (4.1). For 
simplicity, we shall further deal exclusively with the interaction term, 

S E+

intS EH H+ ≡
) )

. 
As we learned from Section 4: A proper choice (model) of intH

)
 might provide both existence 

and stability of an ensemble of conformations in the stationary state of the composite system. To 
this end, it is crucial to recognize the conformation SK

)
 as the “pointer observable” of the system. In 

an ensemble of conformations, in general, every conformation, i S
k , should be ascribed a 

probability . Then, the initial stationary state (point (i) of Section 2.2) of the ensemble 

is described by the statistical operator: 

; 1i i
i

p p =∑

S i i S
i

ip k kρ =∑) .        (5.3) 

More precisely, in order to obtain existence (appearance due to decoherence) and maintenance 
(stability due to decoherence) of the conformations in the initial state (5.3), it is necessary (and for 
certain simple models, it is sufficient) to have satisfied the condition/requirement [16]: 

int , S EH K I⎡ 0⎤⊗ =⎣ ⎦
) ) )

.        (5.4) 
Fortunatelly enough, this gives rise to applicability of a rather wide class (and types) of the 
interaction Hamiltonians. 

Actually, one may write (for the time independent interaction) for the unitary operator of the 
composite system: 

{ }int intexp / 2U U ithH π≅ = −
) ) )

,       (5.5) 
which for the initial state (before the „initial stationary state“ (5.3)) 

( 0) 0i i S
i

t C kψ = = ⊗∑ E
,      (5.6) 

gives for the state in an instant t : 
( ) ( )i i iS

i
t C k tψ = ⊗∑ E

χ ,      (5.7) 

satisfying the condition: 
lim ( ) ( ) 0,   i jt i jt tχ χ→∞ = ≠ .      (5.8) 

Needless to say, then one obtains satisfiability of the condition (4.10) - existence (appearance) 
of the preferred states of the open system , the set of preferred conformations. Since (5.4) 
guarantees stability (robustness) of the conformations, relative to 

S
intH
)

, the requirement of 

maintenance of the conformations is also satisfied, where 2
i ip C= . Physically: The proper model 

(5.4) gives rise to appearance and stability of conformation for every single molecule in the liquid 
in the initial stationary state (5.3). 

 
5.2  Nonstationary state 
 

The external action on the composite system (point (ii) of Section 2.2) gives rise to the change 
of the system’s parameters. It is the fact: Such external actions might induce the change of the 
stationary state as well as of the conformational transitions for every single molecule. In effect, 
there appear another ensemble of the possible conformations. 

Modeling the non-stationary state in the general terms is rather simple. Actually, it seems quite 
natural to assume that the external action changes the interaction in the composite system. 
Furthermore, it is certainly the case that the new (effective) environment, 'E , appears. Therefore, 
one should assume the new interaction term, ' 'S E intH H+ ≡

) )
. Setting (cf. (4.15)): 

int '' , 0S EH K I⎡ ⎤⊗ ≠⎣ ⎦
) ) )

,        (5.9) 
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and consequently int int, ' 0H H⎡ ⎤ ≠⎣ ⎦
) )

, one may obtain the change of conformations. 

Assuming that the external action is so strong that int'H
)

 dominates in the system, then the 
spectral form (5.3) necessarily changes. Actually, then one may write: 

[ ], ' 0S Sρ ρ ≠) ) ,         (5.10) 
where the state 'Sρ)  refers to the nonstationary state, and is defined as: 

*
int ' int' ( ) ' ( ') ' ,   'S E S Et tr U t U t tρ ρ += >

) )) ) ;     (5.11) 

where { }int int' exp ' / 2U ithH π= −
) )

. 

These general considerations do not restrict significantly the possible set of states ' ( )S tρ) . 
Furthermore, due to (5.10), one may be free to write: 

' ( ) ( )S i it S
i

t t itρ π χ χ=∑) ,       (5.12) 

where, in general, there appears coherence of the different conformations: 
jt ijt i S

i

kχ α=∑ .        (5.13) 

Physically, the external action breaks the initial loss of coherence, which is caused by 
decoherence giving rise to the initial stationary state (5.3). This observation is virtually totally 
independent on the assumptions about the new interaction (in the system 'S E+ ) [16].  

The non-stationary state is expected to be terminated by the relaxation process. 
 
5.3  The relaxation process 

 
Following the evidence (point (iii) of Section 2.2), we assume that the external action 

terminates, eventually giving rise to the relaxation process. Actually, we assume that the relaxation 
process gives rise to re-establishing of the stationary state, which, in turn, should be determined by 
the same kind of interaction - selecting the conformational states as the „pointer basis“. Actually, 
we assume that the new composite system, 'S E+ , is defined by the interaction of the kind4  (5.4). 
With this natural assumption, we easily reproduce re-appearance of conformations, as the final 
states for every single molecule - cf. Section 4. 

Namely, validity of (5.4) in the final stationary state gives rise to the possible occurrence of 
decoherence in the composite system 'S E+ . This is exactly what we have required in Section 2: 
Essentially, the stationary states (initial and final ones) should qualitatively coincide - being 
characterized by the appearance and stability of conformations. 

Formally, if we denote the final state (after the relaxation process) by ''ρ) , then the relaxation 
process gives rise to the transition: 

relaxation'S ''Sρ ρ⎯⎯⎯⎯→) ) ,        (5.14) 
while the subsequent decoherence gives rise to: 

decoherence in the new stationary state'' '''S Sρ ρ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→) ) .     (5.15) 
The point strongly to be emphasized is that '''Sρ)  now reads, in general as: 

''' ' 'S j j S
j

q k kρ =∑ j
) ,        (5.16) 

                                                 
4 Not necessarily of the same type (of the same form). 
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where, in general, appear both the different conformations5, ' j S
k , as well as the different 

probabilities jq  (of the possible conformations in the final ensemble) than in the initial stationary 
state (5.3). 

Needless to say, physically, this means that the net effect is the conformational change: 
''' ' 'S i i i S j jS S

i j
jp k k q k kρ ρ= → =∑ ∑) ) ,    (5.17) 

as it is experimentally observed. 
 
5.4  The model 

 
We keep in mind the requirements of Section 2. Then, with respect to the experience with the 

decoherence theory (Section 4), we call for the rather general, hopefully realistic assumptions about 
the composite system, i.e. about the interactions in the composite system(s) - (5.4) and (5.9).  

Concretely, we assume: 
(A) Every stationary state (initial, intermediate-if such exist-states, as well as the final one) is 

characterized by interaction in the composite system that is of the same kind - being able to 
give rise to the occurrence of decoherence with the conformations as the “pointer basis states”. 

(B) Non-stationary state is characterized by the change in the character of interaction in the 
composite system.  
The net effect takes the folowing „phases“, each having its own characteristic time: 

(a) External action (producing the non-stationary state), taking time extT , 
(b) Relaxation process (establishing the new, final stationary state), taking time relaxT , 
(c) Decoherence process (in the final stationary state), taking time of the „decoherence time“, Dτ . 

Therefore, to summarise, the conformation transition (5.17) takes time: 
ext relax DT T τ+ +         (5.18) 

which (cf. Section 4) gives (plausibly) rise to  
ext relax D ext relaxT T T Tτ+ + ≈ +        (5.19) 

Therefore, we conclude: 
In our model, the Levinthal’s paradox completely disappears. 

 
6. DISCUSSION 

 
We essentially make a couple of plausible assumptions/interpretations of the 

phenomenological data which allow the natural accounting for the decoherence effect in the 
composite system „conformation + environment“. These assumptions are worth repeating. First, we 
assume that every stationary state of the composite system - that is characterized by the constant 
values of the system’s parameters - is characterized by the same kind of interaction in the composite 
system (cf. (5.4)). Second, we assume that the external action - eventually giving rise to the 
conformational transitions - substantially change the kind of interaction in the (new) composite 
system (cf. (5.9)). It is a matter of the general decoherence theory straightworwardly to prove the 
final result (5.17), as well as (5.19) [7,14-16,19]. 

Needless to say, the system  (the „conformation“) is (likewise in the (semi-)classical 
approach) a characteristic of a (single) molecule as a whole. That is, as usual, we do not take into 
account the local details of the conformational rotations themselves, which essentially take into 
account the electron state transitions. As much as we can see, these are of the secondary importance 

S

                                                 
5 An extreme case is ' ,i jk k=  while i jp q≠ . This is just the change of concentrations of the initial 

conformations.  
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to our model, which abandons the concept of the transitions in K -space. Abandoning the K -space 
is key to the possible success of our model: It is a decoherence-like process that breaks stability of 
conformations (in the non-stationary state), eventually giving rise to the possibility of rather fast 
conformational transitions. 

There is the following prediction from our model: Even for the single (unique) initial 
conformation in the composite system ( 0 1, 0, 0ip p i= = ∀ ≠  - cf. (5.3)), our model predicts 
appearance of a set (non-unique) of the final conformations ( 1,jq j≠ ∀  - cf. (5.16)). Distinguishing 
experimentally between this prediction and the opposite possibility - e.g. one-to-one conformational 
transitions - might sharpen the role of our proposal in the context of the conformational transitions 
problem. 

Bearing in mind the foundations of the decoherence process, it should be also stressed: A 
definition of an open system goes simultaneously with defining the system’s environment [20,21]. 
A strong, local interaction with a part of the environment may redefine the open system, 
simultaneously defining the rest of the environment as the new environment for the new open 
system. This way, even the larger „pieces“ of a living cell may be allowed the quantum-mechanical 
behavior - which, we believe, might be of interest in the biomolecular recognition process [22,23]. 

 
7. CONCLUSION 

 
The Levinthal’s paradox is an open problem yet. In order to avoid the core of the problem - it’s 

kinematical aspect - we propose a new approach in this regard. Actually, we treat the 
macromolecules conformations as the quantum-mechanical observable. Bearing in mind the 
foundations of the decoherence theory, we are able to model both, existence and maintenance of the 
conformations as well as the conformational transitions in the rather short time intervals. Our 
model is rather qualitative yet a general one, while completely removing the Levinthal’s paradox - 
in contradistinction with the (semi-)classical approach to the issue. 
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