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INTRODUCTION

CONCLUSION

THERMAL CONDUCTIVITY OF GRAPHENE

The temperature dependence of thermal conductivity of polycrystalline graphene is

analyzed, as polycrystalline graphene is more often experimentally realized than

monocrystalline one. Phonons make the greatest contribution to the thermal

conductivity of graphene (while its electronic component is negligibly small). The

contribution of all three branches of acoustic phonons to thermal conductivity is

calculated taking into account phonon scattering at the sample boundaries, point

defects, grain boundaries, and phonon-phonon scattering. The temperature

dependence of thermal conductivity is calculated numerically in approximation of

the relaxation time. The obtained results for the thermal conductivity of

polycrystalline graphene are compared with the results for monocrystalline

graphene and experimental results.

Characteristics of phonon spectrum are determined by 2D structure of graphene.

Graphene has a hexagonal structure with two carbon atoms in each cell. This

determines the appearance of the six phonon branches in the dispersion spectrum:

three acoustic (LA, TA, ZA) and three optical (LO, TO, ZO). The main

contribution to thermal conductivity of graphene is provided by acoustic phonon

branches, while contribution of optical phonon branches is neglected. LA and TA

acoustic modes correspond to longitudinal and transverse phonon oscillations in a

graphene plane, and have linear dispersion laws , , while ZA acoustic

mode corresponds to oscillations of phonons in the direction normal to direction of

LA and TA oscillation modes, and has nonlinear dispersion law, .

Coefficient of phonon conductivity is determined by relation:

1 1v q  2 2v q 

1.5

3 3v q 

Calculations are performed using the software package Mathematica. Index s has

values s ϵ (TA, LA, ZA) while relevant parameters are given in table below

RESULTS OF NUMERICAL CALCULATIONS OF 

GRAPHENE THERMAL CONDUCTIVITIES

Larger samples of graphene are, as a rule, of polycrystalline structure. Heat

transfer in graphene, at room temperatures, is of interest due to its possible

application in electronics and photonics. It has been experimentally proven that

the basic contribution to the thermal conductivity of graphene is the phonon

thermal conductivity, while the electronic thermal conductivity can be

neglected. The coefficient of thermal conductivity in polycrystalline graphene

was found by solving the Boltzmann transport equation in the relaxation time

approximation. For different phonon scattering mechanisms, relaxation times

as a function of temperature have been adopted from the literature, as well as

the values of the corresponding parameters. Based on that, the contribution to

the thermal conductivity of each individual phonon branch of acoustic phonons

was calculated numerically. The results obtained in polycrystalline graphene

were compared with the results obtained in monocrystalline one. It is

noticeable (Fig. 1) that the contribution of the ZA phonon branch in

polycrystalline graphene is higher than in monocrystalline one, especially at

lower temperatures. After 50 K, the contribution of the ZA phonon branch is

less than the contribution of the LA phonon branch, but greater than the

contribution of the TA phonon branch. Only after 170 K, the contribution of the

TA phonon branch becomes greater than the contribution of the ZA phonon

branch. Also, in monocrystalline graphene, the contributions of LA and TA

phonon branches are functionally the same, except that the contribution of TA

phonon branch is somewhat smaller. In polycrystalline graphene, the

contributions of LA and TA phonon branches differ significantly although they

are functionally similar (Figs. 2 and 3). Finally, the total thermal conductivity

of polycrystalline graphene is about 50% lower than the thermal conductivity

of monocrystalline graphene, in accordance with the experimental data (Fig. 4).
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At low temperatures in sufficiently pure sample the most important mechanism is

scattering at boundaries of the sample. Relaxation time for this case is defined as:

where p is a measure of surface roughness, and Lx is smallest dimension of sheet.

In the case of elastic scattering on isotopes, the relaxation time is defined by:

For U-processes the relaxation time is defined as:

where γ is Grüneisen constant.

In the literature it is proposed that polycristalline boundaries can be modelled by

disclinations (rotationary dislocations). The boundary grains are represented by

static two-axes dipoles of the length L. The character of phonon relaxations on

these dipoles depends on the ratio of the phonon wavelength  and length L. The

relaxation time on the grain boundaries is represented by:

which is obtaind in the approximation of the deformation potential, with

where  is Grüneisen constant,  is Poisson constant,  is Frank index, and ni is the

surface density of dipoles. The function G(qL) is given as

where and are Bessel functions.

3

2

1 2
,d

pd D

A


 


D

B
s

u Mv

Tk








2

2

22
1


2 2 21
2 ( )i

GB

D L n G qL 




 1 2 / (1 )D     

       2 2
0 1 0 1( ) /G qL J qL J qL J qL J qL qL  

 0J qL  1J qL

Figure 1. Contributions of particular phonon branches to thermal conductivity of 

monocrystalline (left) and polycrystalline graphene (right).

Figure 2. Contributions of particular phonon branches to thermal conductivity of 

monocrystalline (left) and polycrystalline graphene (right) at low-temperatures. 

Figure 3. Thermal conductivities originating from TA and ZA phonon branches in 

polycrystalline graphene.

Figure 4. Total thermal conductivities in monocystalline and polycrystalline 

graphenes.

Table 1. Relevant parameters adopted in thermal calculations above.

where Lz is the sample thickness, v is the phonon group velocity, u is the phonon

phase velocity, and τ is the phonon relaxation time.


