
YUCOMAT 2017, Herceg Novi, Montenegro

TEMPERATURE DEPENDENCE OF RELAXATION 

TIMES OF QUASIPARTICLES IN GRAPHENE

S.K. Jaćimovski, D.I. Raković, 

Belgrade, Serbia

INTRODUCTION

CONCLUSION

Temperature dependance of relaxation times of quasiparticles in graphene is

explored, which enable finding expressions for temperature dependance of

transport coefficients, that can be then experimentally tested relatively easily.

Analytical expressions for relaxation times were found in two extreme cases:

for and , or in case of scattering of quasiparticles on phonons for

and . In other cases transport coefficients could be found

numerically, which was not considered in this presentation.

For each case considered, graphical presentations of temperature dependances of

relaxation times were provided for two extreme temperature ranges in graphene.

By analysis of transport coefficients and application of Matthiessen rule for

calculated relaxation times the following conclusions could be drawn:

1. At low temperatures, the least influence on transport coefficients in graphene

is exerted by phonons, point impurities with screened potential and vacancies,

followed by impurities with long-range Coulomb potential, while the greatest

influence is exerted by impurities with short-range delta potential;

2. At high temperatures, the least influence on transport coefficients in graphene

is exerted by impurities with screened potential and vacancies, followed by

impurities with short-range delta potential and by impurities with long-range

Coulomb potential, while the greatest influence is exerted by phonons.

It is interesting to note that point impurities with screened potential and

vacancies have similar contributions to transport coefficients in graphene at both

low and high temperatures.

RELAXATION TIME

The temperature dependence of relaxation times of quasiparticles (electrons and

phonons) is analyzed in graphene from the first principles. In the transport

processes the various mechanisms of relaxations are essential (electron and

phonon scatterings on impurities, phonons, vacancies...). Therefore, relaxation

times are found for several characteristic and mostly involved scattering

mechanisms of quasiparticles in graphene. This is of fundamental importance

for any method applied in further studying of the transport characteristics

(solving Boltzmann's equation, using Green's functions...). In particular, the role

of relaxation times is important in finding temperature dependence of the

coefficients of electronic and thermal conductivities in graphene, as measurable

macroscopic transport properties.

SCATTERING MECHANISMS OF QUASIPARTICLES

Boltzmann's equation is solved in the approximation of relaxation time, which

depends on scatterings of quasiparticles on different imperfections of graphene

crystal lattice. These processes of scatterings are analyzed either via Born’s

approximation or via phase shift (scatterings on vacancies).
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Relaxation times are essentially important for finding transport coefficients:
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Mean energy per quasiparticle as a function of temperature is:
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1. Scattering on short-range delta-potential;

2. Scattering on screened potential of charged impurities;

3. Scattering on phonons;

4. Scattering on vacancies.
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SCATTERING ON SHORT-RANGE DELTA POTENTIAL

SCATTERING ON LONG-RANGE COULOMB POTENTIAL

SCATTERING ON PHONONS

SCATTERING ON VACANCIES

SCATTERING ON SCREENED POTENTIAL


