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Abstract: The study of graphene thermal conductivity is of great importance, as its anomalous 

thermal and electrical conductivities (the largest among the all known materials so far) provide 

very good perspectives for graphene-based nanoelectronics devices. Thermal conductivity of 

graphene is phonon-based, since its electronic-based thermal conductivity represents less than 

1% of the total thermal conductivity at room temperature. For the consideration of the thermal 

conductivity of graphene the Boltzmann equation in the approximation of relaxation time is 

used. The relaxation time is determined, with three mechanisms of phonon scattering 

accounted simultaneously: at defects, at borders, and on phonons. Temperature dependence of 

thermal conductivity is determined numerically in the range from 15 K to 400 K. The results 

obtained are in accordance with some other available results found in literature, obtained either 

experimentally or by numerical calculations. 
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Introduction 

 

In order to fulfill the essential task of phonon engineering [1], to improve the electric and 

thermal transport properties of the given nanostructure, it is very important to get acquainted 

with its mechanisms of thermal conductivity. Since the contribution of phonon subsystems to 

thermodynamic analysis is the first step in research of nano structure properties [2], special 

attention in this paper is devoted to study of phonon thermal conductivity of graphene. 

Graphene is a single layer 2D structure which surface is covered with regular hexagons of 0.142 

nm side, with carbon atoms in hexagons’ vertices. It can be considered as a structural part of graphite, 

whose 3D structure is composed of graphene planes located at a distance of 3 nm [3]. Graphene has 

unique properties such as anomalous high electrical and thermal conductivity, extremely high 

mobility of charge carriers, dependence of electric properties from the presence of impurities on the 

surface, the ability to set the size of the band gap, quantum Hall effect and good electromechanical 

characteristics [4]. All above make graphene a very promising material for nanoelectronics. 

Ideal pristine 2D structure cannot be obtained due to thermodynamic instability [5–9]. But, if this 

structure is strained or has defects, it can exist without contact with the wafer. It is experimentally 

established that there are free graphene sheets that constitute the complex wavy form [10]. 

Out of the mentioned properties the most striking is the anomalous high thermal conductivity. 

The measured thermal conductivity [11] is in the range from 3500 W/mK to 5500 W/mK, the largest 

among the all known materials so far. 
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Based on the measured electrical conductivity and using Wiedemann–Franz law, it is estimated 

that the share of electronic thermal conductivity in the total thermal conductivity, is less than 1% 

[11,12]. Therefore, the mechanism of the graphene  thermal conductivity is mostly phonon-based. It 

is the analysis of the grapheme thermal conductivity that can help explaining the paradox of a solid-

state physics. This paradox is associated with a monotone growth of the coefficient of phonon thermal 

conductivity of an ideal crystal (without defects) with the increase of its size, due to enlarged number 

of phonon modes which can exist in such sample. In real terms, there are several physical 

mechanisms which limit increase of coefficient of thermal conductivity of a real sample even though 

increase of its size [3].By examining the coefficient of thermal conductivity of grapheme  it is 

possible to determine the reasons limiting the thermal conductivity of 2D structures, as well as the 

changes of the coefficient of thermal conductivity with increasing number of  layers. It is assumed 

that an increase in the number of layers reduces the coefficient of  thermal conductivity, because there 

is another channel for the scattering of phonons, associated with the interaction of layers. 

The sheets of ideal graphene of infinite dimensions do not differ among each other. But the 

real samples differ not only in size but also in the structure of boundaries, which modifies 

acoustic phonon properties such as phonon group velocity, polarization, density of states, and 

changes the way acoustic phonons interact with other phonons, defects and electrons [1], cre 

ating opportunities for engineering phonon spectrum in order to improve thermal properties [2]. 

Graphene of sufficiently large size cannot have an ideal structure, because the grapheme surface 

contains structural defects depending on the synthesis and external conditions. These defects are: 

vacancies or adsorption of some functional group on the surface (which represent the most common 

type of defects), Stone-Wales defect, isotopic defect, dislocations, etc. [3]. The existence of these 

defects and boundaries significantly affects the coefficient of thermal conductivity and other transport 

properties of graphene. 

 

 

Thermal conductivity of graphene 

 

Thermal properties of nanomaterial graphene (specific heat, thermal expansion coefficient, 

the coefficient of thermal conductivity) significantly depend on phonon characteristics. 

Characteristics of phonon spectrum are determined by 2D structure of graphene. Graphene has a 

hexagonal structure with two carbon atoms in each cell. This causes the appearance of the six 

phonon branches in the dispersion spectrum: three acoustic (LA, TA and ZA) and three optical 

(LO, TO and ZO). LA and TA modes correspond to longitudinal and transversal phonon 

oscillations in a graphene plane. Mode ZA corresponds to oscillations of phonons in the direction 

normal to the direction of oscillation modes LA and TA. LA and TA modes have a linear 

dispersion law [12,13]: q  , with the velocities: LA 18.4 km/s   and TA 16.5 km/s  . 

There is no agreement related to the dispersion law for mode ZA. In our calculation we adopted 

the dispersion law 
23

3 q 
 
(instead of usually used 

2

3 q  , as experimentally better fitted 

[13]) and the velocity ( ) 9.2 km/sZA   [14,15]. 

The phonon thermal conductivity is determined from Boltzmann transport equation [14–

16]:  
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collision integral. Unlike the ordinary gas, the total number of phonons and quasi-total phonon 

momentum are not conserved in the phonon gas. The total quasi-momentum is not conserved 
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due to the so-called U process (process of transfer) where the general quasi-momentum can 

change for the value of the reciprocal lattice vectors:  

bqq
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
 

' .                                                       (2) 

In ordinary, so called, normal N-processes, total quasi-momentum is conserved [14–16]. 

The usual approach for the Boltzmann equation solving lies in the linearization of collision 

integral around the equilibrium of phonon distribution function. This approach is possible if 

temperature gradient is not large, when the phonon distribution function is close to equilibrium, and 

the temperature which determines the distribution function slowly changes along the graphene sheet.   

Heat flux is defined as:  
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where V is the volume of graphene sheet. 

For the stationary case, 
0 ( )

0sn q
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. The left side of the Boltzmann equation (1) becomes: 
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Collision integral is linearized near the equilibrium distribution, i.e. 
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where )(0 qns


 is the equilibrium distribution function of phonons of polarization s while )(1 qns


 is 

the corresponding near-equilibrium deviation, and linearization is done in the approximation of 

relaxation times: 
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where )(qs


  is the relaxation time of phonons of polarization s. Using (4) and (6), Boltzmann 

equation (1) becomes:  
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Now, heat flux can be expressed as: 
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Since the phonon distribution function is close to the equilibrium distribution function, we can 

use 
T
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, and from (7) obtain: 
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On the basis of equations (8) and (9), expression for heat flux becomes: 
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Wherefrom the diagonal part of tensor of thermal conductivity can be written as: 
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In the last relation  is the angle between the graphene direction (x-axis) and the heat 

propagation direction. Switching from the summation to integration:  
2

2d ( )dD

q

q g       (as in [14]), where the phonon density of states for 2D case, 2 ( )Dg 

is defined from [16]: 
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 andu are group and phase velocity, respectively. 

By averaging over angle φ, from (11) the expression for the thermal conductivity of 

graphene is finally obtained: 

 
max

min

2

22

1 e
( ) ( ) d .

4
e 1

s

B

s

B

k T

s s s s

sz B
k T

L k T u









     




 
 

 
 

   (15) 

 

 

Phonon scattering processes 

 

The main contribution to the thermal conductivity provides acoustic branches, while the 

contribution of optical branches is negligible. The average time of phonons relaxation, which 

exists in expression (15), is determined by phonon scattering processes. Average scattering time is 

defined with Mathisen’s rule as: 
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where i – denotes the number of different scattering processes. 

The most common scattering processes are: scattering of phonons at boundaries, scattering of 

phonons at defects (isotopic impurities, vacancies), and phonon-phonon scattering. Relaxation time 

for the appropriate type of scattering, considered below, is the estimated time.  

At low temperatures in sufficiently pure sample the most important scattering mechanism is 

scattering at boundaries of the sample. Relaxation time for this case is defined in[14,17] as: 
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where p is a measure of surface roughness, and Lx is the smallest dimension of sheet. 

In the case of elastic scattering on isotopes, the relaxation time is defined in [18,19] by 

expression: 
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where is Ad = cd ∆M/M. Here is cd concentration of defects and ∆M/M is a ratio of elementary 

cell atomic mass change and atomic mass of a cell; ωD  is Debye frequency.

 

Even for small amounts of defects, the scattering on defects becomes a leading term, so 

that phonon-phonon scattering becomes negligible. 

According to Peierls [5,6] the N-processes do not take part in the heat transmission. But, 

when it comes to graphene, this statement is questionable because of existence of YA mod with 

nonlinear dispersion law. Even though this question remains open, the contribution of the 

phonons which take part in N processes in heat transmission is going to be neglected in this 

paper. Therefore, for phonon–phonon scattering, so called, U-processes are significant.  

For U-processes the relaxation time is defined as [20]: 
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where s  is Grüneisen parameter. In case of the three-phonon U-processes only: 

2
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   , which leads to the so-called logarithmic divergence of thermal 

conductivity of 2D systems. Therefore, lower limit of integral is not zero but certain minimum 

value. Klemens gave a physical interpretation of the choice of this minimum value. He 

suggested the value ωmin to be determined from the assumption that average free path of 

phonon is not greater than the characteristic dimension Lx of graphene [20]:  
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Temperature dependence of the coefficient of thermal conductivity 

 

In this paper are analyzed various mechanisms of relaxation. Phonon–phonon scattering (U-

scattering) and scattering at boundaries, taken together, provide high thermal conductivity values 

(as in[12]). If we take into account the scattering at defects, thermal conductivity is significantly 

reduced even for small concentration of defects. Calculations were carried out on the basis of 

relation: 
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by taking into account expressions (17–19). Calculations were performed using the software 

package Mathematica 9. Index s has values s ϵ (LA,TA), while relevant parameters are given in 

Table 1. 

 
Table 1: Relevant parameters of thermal conductivity 

 

[μm]zL

 

[μm]xL

 

[km/s]LA

 

[km/s]TA
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0.35
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[kg]M  dA  
p  , [Hz]D LA
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14
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On the basis of our numerical calculations, with scattering at boundaries and phonon-

phonon interaction only, temperature dependence of the graphene thermal conductivity is 

depicted in Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Calculated thermal conductivity of graphene (with no defects and impurities) 

as a function of temperature for different phonon branches 

ZA – blue line, TA – green line, LA – red line, total thermal conductivity – black line 

 

Figure 1 shows that when there is no scattering at defects the coefficient of thermal 

conductivity for the adopted parameters, reaches the value of 3.1 kW/(K·m). 

The result obtained by taking into account all aspects of the scattering (at the borders, 

phonon-phonon scattering and scattering at defects) is shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2:Calculated thermal conductivity of graphene for different  

phonon branches and all mechanisms of relaxation 

ZA –blue line, TA –green line, LA – red  line and total thermal conductivity –black line 

 

From the Figures 1 and 2 it can be seen that the total thermal conductivity for the adopted 

parameters is about 2.6 kW/(K·m), which is consistent with experimental data [21]. Also, in 

Figure 1 are given temperature dependences of individual phonon branches. The greatest 

contribution to the thermal conductivity provides LA phonon branch, and branches TA 

provides only slightly lower contribution. The smallest share of the thermal conductivity 

provides ZA phonon branch that is about 20% of the total thermal conductivity. This is 

probably due to the small group velocity of ZA mode and great value of Grüneisen parameter. 

Interesting is alow-temperature area in which the largest contribution to thermal conductivity 

provides just ZA phonon branch (Figure 3). 
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Figure 3: Low temperature dependence of thermal conductivity 

for different phonon branches; ZA –blue, TA – green, LA –red 

 

It also can be noted from the Figure 3 that the thermal conductivity for ZA branch fastest 

drops to zero, i.e. it has the steepest decline. At a temperature T*, slightly lower than 50 K, all 

three phonon branches give equal contribution to thermal conductivity of graphene. Up to this 

temperature, the contribution to the thermal conductivity of TA phonon branch is larger than that 

of the LA branch, and for the values greater than T* the contribution of these branches is invers. 

Defects influence to the probability of scattering of phonons and the coefficient of thermal 

conductivity of real samples depends on the concentration of defects. The reduction of thermal 

conductivity coefficient of graphene with increasing concentration of defects is experimentally 

measured [11,22]. 

In the case of graphene samples without defects (Figure 1) the contribution of phonon branches 

of LA and TA is greater than in the case of samples with defects, which affects the growth of the 

total thermal conductivity, which now amounts to about 3.1 kW/(K·m). The contribution of 

phonon branch ZA is approximately the same as in the case of the sample with defects. 

When analyzing the effect of different concentrations of defects on the total thermal 

conductivity of graphene, it can be seen that the thermal conductivity decreases with increasing 

concentration of defects (Figure 4). In the case of up to 0.5% increase of impurities 

concentration, for the values adopted in our example, the maximal thermal conductivity is 

reduced by about 12%, and the total thermal conductivity is reduced by 8.5%. For 1% increase 

of impurities concentration, the maximal thermal conductivity is reduced by about 24% and the 

total thermal conductivity is reduced by 15%. In doing so, the maximum values of thermal 

conductivity move into region of higher temperatures. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4: The dependence of coefficient of thermal conductivity for different concentrations  

of impurities; 44.5 10dA   –black line, 49 10dA   – blue line, 413.5 10dA   – red line 
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The certain influence to the phonon properties of graphene at finite temperatures has 

anharmonic character of oscillations of the crystal lattice. One of the most important 

characteristic of anharmonic oscillations of graphene is phonon frequency dependence on the 

dimensions of elementary graphene cell, so called Grüneisen parameter: 

0

0

0

d ( )

2 ( ) d

s
s

s

a q

q a





  

Here are: a– dimension of elementary cell, q


– the wave vector of Brillouin zone, s– index of 

phonon mode, and the index 0 indicates the sizes corresponding to the equilibrium structure of 

the lattice. As a rule Grüneisen parameter is a positive value, because with oscillation 

amplitude increase, the mean value of the grid dimensions increases and frequency of 

oscillation decreases. However, under certain conditions, with layered structures type graphene, 

Grüneisen parameter can be negative [23]. In the paper [24] were calculated values of 

Grüneisen parameters in graphene and for some mode it is negative. The largest negative 

values correspond to ZA mode. The frequency of that mode increases with the lattice parameter 

increase, since during the stretching of graphene layer the movement of atoms is confined in 

the perpendicular direction to the layer thus increasing the frequency of oscillations of atoms–

effect of membrane [25]. 

In this paper is analyzed the impact of the value of Grüneisen parameters on the total 

thermal conduction of graphene. In Figure 5 are presented the temperature dependences of the 

total thermal conductivity for different values of Grüneisen parameters. From Figure 5 is 

noticeable that the total thermal conductivity decreases for lower values of Grüneisen parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: The dependence of the coefficient of thermal conductivity on Grüneisen parameters; 

1.8; 0.75; 2LA TA ZA      – black line, 1.5; 0.56; 1.8LA TA ZA      – red  line 

 

It is interesting how the total thermal conductivity of graphene depends on the graphene 

sample size given in Figure 6. It is also evident that the thermal conductivity of graphene 

decreases with the sample size decrease, which is in accordance with the experimentally 

obtained results [26]. For the selected values and given temperature range in our case, the 

maximum value of thermal conductivity decreases for 52.23% if the dimensions of sample are 

cut twice, and the total thermal conductivity falls for 37%. When the dimensions of the sample 

are cut four times, then the maximum value of thermal conductivity is reduced by 62.13%, and 

the total thermal conductivity by 52%. In doing so, the maximum values of thermal 

conductivity are moving in the region of higher temperatures with sample size decrease. It is 

obvious that reduction of the dimensions of graphene sheet diminish the role of three-phonon 

U-process, causing a decrease of the coefficient of thermal conductivity. 
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Figure 6: Temperature-dependence of the coefficient of thermal conductivity on the length of the 

sample; 100xL m – black line, 50xL m – red line, 25xL m – blue line 

 

 

Conclusion 

 

The study of graphene provides answers to fundamental issues related to the characteristics 

of two-dimensional crystal structure. The very fact of the existence of graphene is contrary to 

the principle formulated seventy years ago on the thermodynamic instability of similar 

structures. 

The study of graphene is justified because of its exceptional characteristics and potential 

significant applications. The high thermal, mechanical and chemical stability associated with 

exceptional transport characteristics offer great opportunities for practical application of 

graphene. High value of coefficient of thermal conductivity is one of the important 

characteristics of graphene and has record levels of all known materials. 

Thermal conductivity of grapheme is essentially phonon-based. The analyzed grapheme 

samples` dimensions exceeded average free path of phonons (800 nm [3]). Otherwise, a so-called 

ballistic transport would appear, with phonons spreading through the sample without scattering. 

The obtained results have been achieved with a simplistic assumption that Grüneisen 

parameters, group and phase velocity of phonons are constant sizes. These parameters generally 

depend on the phonons frequency. 

Different measurements of the coefficient of thermal conductivity of graphene, as well as 

different theoretical investigations give different results. It is evident that at low temperatures, 

the coefficient of thermal conduction is proportional to T
2
, and at high temperatures to T

-1
 what 

is in line with the general theory of the coefficient of thermal conductivity for 2D structures 

[16,17,27,28]. Also, the absolute value of coefficient of thermal conductivity increases with 

graphene sheet dimensions increase, which is associated with an increase in the number of 

phonon modes that occur in the sample. However, it is obvious that there are several physical 

mechanisms that limit the increase of the coefficient of thermal conductivity with increasing 

dimensions. One such mechanism is the scattering of phonons on defects. Further research 

should provide the answer about other mechanisms. Also, one direction of research is changing 

the phonon spectra, density of states and group velocity of phonons [29,30] which contribute to 

graphene thermal conductivity changes. Since experimental research of such miniature objects 

is difficult, numerical modeling should greatly provide information on important factors such 

as, for example, a form of potential interatomic interaction in graphene. 
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