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The exceptional transport characteristics, coupled with high thermal, mechanical and chemical stability, pro-
vide wide opportunities for practical application of graphene. Temperature dependence of graphene electrical
conductivity is hereby analyzed in wide temperature range of 15–400 K, by solving semiclassical Boltzmann
equation in the approximation of relaxation time. Basic relaxation mechanisms in graphene–electron scattering
on impurities and electron–phonon interaction–are accounted with corresponding relaxation times introduced
phenomenologically. The received results are compared with the experimental data from the referent sources.
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1. INTRODUCTION
In the past several decades much attention has been devoted
to electronic properties of low-dimensional systems in the con-
densed matter physics. Interest in such systems arises mainly
due to the fact that completely new quantum effects appear with
decrease of the system dimensionality. Quantum properties of
such systems are standardly described by Schrödinger equation
of charged quasiparticles behaving nonrelativistically with finite
effective mass. However, significant interest recently appeared for
quite different class of systems with zero effective mass charged
quasiparticles described by Dirac equation. The first represen-
tative of such two-dimensional (2D) systems is graphene, rep-
resenting one layer of carbon atoms ordered within hexagone
lattice.1�2

More than 70 years ago, Landau and Paierls showed that
strictly 2D crystals could not exist as thermodinamically unsta-
ble. Their theory implies that divergent contribution to ther-
malfluctuations in low-dimensional crystal lattices gives rise to
atomic displacements comparative with interatomic distances at
any finite temperature. Fortunately, there is a way to escape this
problem. Interactions with 3D structures stabilize 2D crystals
during their growths. Therefore it is possible to obtain 2D crys-
talsintercalated in between or formed on top of atomic layers
of corresponding 3D crystals. In such form graphene does exist
within graphite, which can be considered built of graphene layers
interacting via van der Waals forces. A group from the University
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of Manchester, lead by Geim i Novoselov, succeded in obtaining
the graphene in 2004, thus starting revolution in this field. Their
group also obtained 2D-crystals of some other materials: boron-
nitride, dichalcogenide, and high-temperature superconductor Bi–
Sr–Ca–Cu–O. Their choice of convenient substrate was silicon-
dioxide, material widely used in semiconductor industry.2

Shortly after obtaining first samples of graphene, numerous
unique electrical, chemical and mechanical characteristics of
graphene were discovered, like unusual half-integral quantum
Hall effect and Barry phase � , which undoubtedly demonstrate
existence of Dirac fermions in graphene and distinguish it in
respect to usual 2D electronic systems with finite effective mass
of charge carriers. It appears that its charge carriers have addi-
tional internal degree of freedom similar to chirality of ultra-
relativistic elementary particles. In this way graphene became
an unexpected link between condensed matter physics and quan-
tum electrodynamics. Its existence now enables some quantum-
relativistic phenomena, otherwise not observable in high-energy
experimental physics, to be simulated and tested in modest exper-
imental environments.1–3

2. GRAPHENE CRYSTAL STRUCTURE AND
DISPERSION LAW OF QUASIPARTICLES

Carbon atoms in graphene crystal lattice form hexagone struc-
ture. This lattice can be considered as superposition of two tri-
angle lattices A and B, with unit cell out of only two atoms.
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Fig. 1. Graphene crystal lattice consisting of two sublattices A and B (a), unit cell vectors (b), and unit vectors in inverse k space (c) (adopted from Ref. [4]).

The parameters of graphene crystal structure are unit vec-
tors �a1 i �a2 of hexagone lattice, presented in Figure 1(b). They
interconnect two adjacent atoms of the same type and their length
is equal to lattice constant a. They can be represented as:
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The graphene Brillouin zone is presented in Figure 1(c). Unit
vectors in inverse k space are:
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All hexagone nodes of Brillouin zone represent Dirac points.
Although there are six of them, only two Dirac points are inde-
pendent. In Figure 2, two groups of Dirac valleys are depicted by
red and blue colours. The valleys belonging to the same group
are on the mutual distance of reciprocal vector �b and represent
the same state. It could be imagined that inner space around every
hexagone node represents one third of the Dirac valley. By con-
necting these thirds, two complete Dirac valleys can be obtained,
as presented in the right part of Figure 2. These two Dirac points
lay on the kx axes and have coordinates:

K = 4�

3a
�1�0�� K ′ = 4�

3a
�−1�0� (3)

Carbon atoms in graphene hexagone plane are interconnected
by strong covalent �-bonds obtained by sp2 hibridization of 2s,
2px i 2py valence atomic orbitals, while the fourth 2pz valence
orbitals are normal onto graphen plane, they mutually weakly
overlap, and are responsible for creating weak � bonds (Fig. 3).
The fourth valence electrons represented by 2pz atomic orbitals
can hop from one carbon atom to another, making half-filled con-
ducting �-zone responsible for electrical properties of graphene.

Fig. 2. Position of Dirac points in inverse k space (adopted from Ref. [4]).

These facts enable succesful application of the model of strong
coupling for finding graphene electronic structure:5
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where L2 is graphene surface, and s = +1 for conducting zone
and s=−1 for valence zone.6 The graphene dispersion low is:1�7

E =±�vF

√
1+4 cos2�kya+4 cos�kya cos�kxa

√
3 (7)

where signs plus and minus correspond to conducting and
valence zones, respectively. The both zones are degenerated in
Dirac point.

The Fermi level is passing through Dirac point (Fig. 4(a)), so
there can be said that graphene is semiconductor without energy
gap or semimetal. In case we take into account only area in the
vicinity of Dirac points K and K ′, dispersion relation can be
significantly simplified. It obtaines linear dependence:

E = �vF k (8)

Fig. 3. Atomic orbitals in graphene (adopted from Ref. [5]).
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Fig. 4. The graphene dispersion relation (a), and its view in the vicinity of
Diracpoint (b) (adopted from Ref. [1]).

where vF is Fermi velocity (with experimentally obtained value
of 106 m/s), k is module of wave vector in 2D-space (withcom-
ponents �kx�ky�), calculated in K or K ′ Diracpoints, and � is
Dirac constant.1�6�8 The zone has the shape of a cone (Fig. 4(b)).
Photon also has a similar spectrum and it is therefore said that
quasiparticles in graphene (electrons or holes) have zero effec-
tive mass. As electrons and holes are fermions, their movement
is described by Dirac equation, but with zero mass of particles
and antiparticles (similarly to equation for massless neutrino).2�5

Linear dispersion law is most important, if not unique, char-
acteristic of quantum transport described by Dirac equation. For
positive energies (above Dirac point) charge carriers are similar
to electrons and are negatively charged. For negative energies,
if valence zone is not filled, quasiparticles behave as positively
charged holes analogous to positrons. It should be noted that elec-
trons and holes in most solid state materials are usually described
by independent Schrödinger equations with corresponding effec-
tive masses. On the contrary, electrons and holes in graphene are
mutually interconnected, demonstrating property of charge con-
jugation symmetry.

Quasi particle density of states in graphene is obtained as a
number of states per unit energy and per unit surface2�9
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1

�2��2
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where gs = 2 is degree of spin degeneracy, and gv = 2 degree
of valence electrons degeneracy. Finally, quasi particle density of
states per unit surface is obtained as follows:

D���= gsgv
�

2��2v2F
= 4

�

2��2v2F
(10)

Fig. 5. Temperature dependance of graphene electrical conductivity in case of relaxation on charged impurities, for temperature ranges T � TBG (left) and
T > TBG (right).

3. GRAPHENE ELECTRICAL CONDUCTIVITY
The main limitation of charge carriers mobility in graphene is
posed by charged impurities in SiO2 substrate and by the exist-
ing phonon subsystem. The related relaxation mechanisms pro-
vide finite lower value for graphene electrical conductivity. Of
special interest is finite conductivity in Dirac point. Based on
semimetal nature of graphene, the simple single-particle theory
predicts either vanishing or infinite electrical conductivity: zero
density of state in Dirac point implies vanishing conductivity,
while absence of energy gap suggests infinite conductivity. How-
ever, it was experimentally obtained that graphene electrical con-
ductivity is finite: �ex ≈ �4e2/h.2�10 On the other hand, more
complex theories can predict finite value �th, which is not in
agreement with the experimental one: �th =�ex/� (“the mystery
of the missing �”).
We shall analyze electrical conductivity of graphene in the

vicinity of Dirac points for linear dispersion law. Our approach
hereby applied is semiclassical, via solving Boltzmann transport
equation, which is justified when notion of particle trajectory is
plausible i.e., when de Broglie wave length of charge carriers is
much less than their mean free path, �� l̄ = v̄
 . When pertur-
bation force originates from electrical field, the estimations show
that Boltzmann transport equation is applicable till very strong
electrical fields.11 It is also shown in practice that application of
Boltzmann transport equation provides results in good agreement
with experimental data for high surface densities of charge carri-
ers i.e., n≥ 1012 cm−2.12 We hereby propose that these conditions
are fulfiled.
Further on, for finding graphene electrical conductivity we

shall apply semiclassical Boltcmann transport equation in the
approximation of relaxation time:13

�f

�t
+ 1

�

�f

��k
· �F + �f

� �r · �v =−g�k

�k

(11)

where f �t� �r� �k� is distribution function, g�k is small discrepancy
from equilibrium distribution, and 
�k is relaxation time. After
linearization of Eq. (11), one obtains

�g�k
�t

+ �f0
� �r · �F + �g�k

� �r · �v =−g�k

�k

(12)

where f0�t� �r� �k� is equilibrium distribution function. By propos-
ing that transport process of charge carriers is stationary and
that distribution function does not depend on coordinates, as
well as that charge transport is achieved under the influence of
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Fig. 6. Temperature dependance of graphene electrical conductivity in case of relaxation on neutral impurities, for temperature ranges T � TBG (left) and
T > TBG (right).

Fig. 7. Temperature dependance of graphene electrical conductivity in case of relaxation on both charged impurities and phonons, for temperature ranges
T � TBG (left) and T > TBG (right).

homogenous electrical field directed along X-axes, �F = −e �E,
Eq. (12) is transformed into:

�F · 1
�
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By convenient transformations relation for small perturbation is
obtained:
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The current density is found via expression9�14

J = gsgv
A

∑
k

e v gk (16)

By inserting expression for perturbation (15) into expression for
current density (16), on the basis of J = �E one obtains expres-
sion for electrical conductivity:

J = gsgv
A

∑
k

e v gk

=
{
1
A

A

�2��2
gsgv

∫ 2�

0
d	

�∫
0

k dk e2v2x


(
−�f0

��

)
E

}



vx = v cos	 (17)

� = 1

�2��2
gsgv

2�∫
0

cos2 	d	

�∫
0

k dke2v2
k

(
−�f0

��

)
(18)

By applying transformation

k dk→ �d�

��vF �
2

we get convenient expression for electrical conductivity of
graphene:
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To calculate total relaxation time we apply Matthiessen rule:

1


=∑

i

1

i

(20)

Fig. 8. Dependency of electrical conductivity on temperature in a wider
temperature interval in cases when all observed relaxation mechanisms are
at work.
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Fig. 9. Dependency of electrical conductivity on the concentration of charge carriers for temperatures lower than TBG (left) and temperatures higher than TBG
(right).

In particular, for relaxation on impurities and phonons,13

1


= 1


im
+ 1


ph
(21)

In case of relaxation on charged impurities (long-range
Coulomb interaction), relaxation time is:7�14
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where �F is graphene Fermi energy, �̃0�̃r is product of dielec-
tric constant of vacuum and relative dielectric constant of sub-
strate, nC

i is concentration of charged impurities, and � is wave
vector.

In case of relaxation on neutral impurities (short-range
Coulomb interaction), relaxation time is:1�6�8
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where nd is concentration of neutral impurities, and V0 is applied
contact voltage. The collision potential in this case has a form
V ��r�= V0���r�, where ���r� is Dirac function.

In case of relaxation on phonons, we analyze the temperature
ranges when T ≥ TBG and when T < TBG, where TBG is Bloch-
Grüneisen temperature, being the temperature limit bellow which
phonon gas is degenerate while above which is non-degenerate.15

In case of T ≥ TBG inverse relaxation time is14�15
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while in case of T < TBG
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In expressions (24–25) D is deformation potential of impurity,
�m is graphene surface density, �F is graphene Fermi energy, kF
is graphene Fermi wave vector, vph is graphene phonon velocity,
and ��4� is Zeta function.

For numerical calculation of electrical conductivity from
Eqs. (19) and (20)–(25), we shall adopt the following values of
parameters:14

D = 30�4 ·10−19 J
 �m = 7�6 ·10−7 kg/m2
 vph = 2 ·104 m/s


�F = 4�168 ·10−19 J
 vF = 106 m/s
 kF = 4�8 ·108 m−1


nC
i = 4 ·1015 m−2
 Z = 1
 �̃r = 2�4
 �̃ = 4�2
 (26)

nd = 0�4 ·1014 m−2
 V0 = 16 ·10−37 Jm2
 TBG = 54 K

For lower temperatures, Eq. (19) is transformed into14�16�17
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while for higher temperatures, it becomes
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When taking into account only relaxation on charged impuri-
ties for temperatures T �TBG, numerical calculation of Eq. (27)
results in the graph of Figure 5 (left), while for temperatures
T >TBG numerical calculation of Eq. (28) results in the graph of
Figure 5 (right).
In case of relaxation on neutral impurities, we obtain the

graphs in Figure 6.
When taking into account both relaxation on charged impuri-

ties and on phonons, using relaxation times given by Matthiessen
rule, numerical calculation of Equations (27) and (28) results in
the graphs of Figure 7.
Figure 8 shows that at lower temperatures, electrical conduc-

tivity oscillates substantially, while at the higher (above 150 K)
monotonously decreases with temperature.
Electrical conductivity depends on the concentration of charge

carriers via Fermi energy �F =�vF
√
�n. For practical reasons,

it is necessary to analyze the dependence of electrical conductiv-
ity on concentration of charge carriers at different temperatures.
Results are shown in Figure 9.
Figure 9 shows that with the increase in temperature, the elec-

trical conductivity of graphenes, in both temperature areas, rises
more slowly.
If dependency of chemical potential on temperature is used

for the calculation of the value of electrical conductivity, the
results differ slightly from the cases when the chemical potential
is constant.

4. CONCLUSION
Graphene research is the most propulsive field in solid state
physics and materials science.19–29 Graphene is continuing to
surprise us with its properties, like extraordinary mechanical
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strength and stretching, exceptional electrical and thermal con-
ductivities, optical transparency etc. What is most attractive in
graphene is its unusual system of charge carriers and unique
transport properties. By new methods of obtaining more perfect
graphene structures (encapsulation of graphene between boron–
nitride crystallites)3 mobility of charge carriers and hence trans-
port properties can be improved.

Graphene is the first and most prominent representative of the
new class of materials–2D crystals. It reveals the new paradigm–
relativistic solid state physics. The uniqueness of its electronic
properties are charge carriers described not by Schrödinger equa-
tion but by Dirac-Weil equation similarly to massless fermions.
Graphene represents serious candidate to replace silicon in micro-
electronics. The first realized prototypes of future devices based
on graphene should be mentioned: field effect transistors and
balistic transistors at room temperature, extremely sensitive gas
sensors, single-electron transistors, liquid-crystal displays and
solar batteries with one graphene electrode, spin transistors etc.2

Therefore, exploration of graphene properties, and especially
transport ones, is fully justified and most important.

In this paper electrical conductivity of graphene in the vicin-
ity of Dirac points for linear dispersion law is analyzed. Our
approach is semiclassical, by solving Boltzmann transport equa-
tion in approximation of relaxation time. The various relaxation
mechanisms of charge carriers in graphene are analyzed: on
charged impurities, on neutral impurities, and on phonons.

For relaxation times adopted from the referent sources, the
dependence of electrical conductivity of graphene was found
numerically depending on the temperature and concentration of
charge carriers.

Finally, it should be noted that impurities in graphene originate
from its substrate (mostly SiO2 or SiC). For graphene samples
abundant in impurities there is a minimal electrical conductiv-
ity, while in pristine samples electrical conductivity is much
larger, which is the case when graphene layer is realized not
on substrate but in some other way.3 The main relaxation cen-
ters in graphene are charged impurities which create long-range
Coulomb potentials. Local deffects (vacancies, dislocations) con-
tribute to the same dependance of relaxation time versus wave
vector �k as charged impurities do. Even more, these local def-
fects provide final densities of states of charge carriers in Dirac
points, which must be taken into account in analysis of lower
bound of graphene electrical conductivity. Namely, the simplified
single-particle theory predicts that graphene electrical conductiv-
ity linearly decreases with decrease of charge carriers concentra-
tion i.e., when n<ni (where ni is concentration of imputities),
so in Dirac points graphene electrical conductivity should vanish.
However, the experiment and more complex theories demonstrate

that graphene electrical conductivity has some minimal value of
the order e2/h,18 showing that for low concentrations of charge
carriers semiclassical Boltzmann approach hereby applied is not
valid.
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