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INTRODUCTION

CONCLUSION

It is obtained that graphene electrical conductivity decreases with

temperature for all relaxation mechanisms. Numerical calculations and

graphs are presented separately in low-temperature and high-

temperature regions, due to different temperature dependences of

chemical potentials and relaxation times in these regiouns.

For relaxation on neutral impurities, graphene electrical conductivity is

almost temperature independent till 300 K (cf. Fig. 2), which is in

excellent agreement with experimental data.

For relaxation on phonons, electrical conductivity is analyzed until TBG

temperature with degenerate phonons, and above TBG temperature

with non-degenerate phonons. It is found that low-temperature

electrical conductivity is lower than the high-temperature one.

It is also obtained that graphene electrical conductivity decreases with

increase of impurity concentration.

GRAPHENE ELECTRICAL CONDUCTIVITY

THERMOELECTRIC POWER

Thermoelectric power can be determined with Neville Mott formula:

Where is relaxation time, is density of states, is Fermi-

Dirac distribution function, and is charge velocity.

Further on, for finding graphene electrical conductivity we shall apply

semiclassical Boltcmann transport equation in the approximation of

relaxation time
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To calculate total relaxation time we apply Matthiessen rule, in case of

relaxation on charged impurities (long-range Coulomb interaction), and

in case of relaxation on neutral impurities (short-range Coulomb

interaction), respectively:

Thermoelectric power (TP) in graphene monolayer is hereby analyzed in

the wide temperature range of 10–300 K, based on semiclassical

Boltzmann equation and theory of linear response. The solutions of

Boltzmann equation are found in the approximation of relaxation time for

different relaxation mechanisms of charge carriers, with temperature

dependence of the corresponding relaxation times adopted from the

literature. Temperature dependence of graphene thermoelectric power is

numerically found and compared with the experimentally observed data.

The dependance of graphene thermoelectric power on the concentration

of charge carriers is analyzed as well.
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Figure 4. Low-temperature dependance of graphene electrical conductivity

(for T << TBG) in case of relaxation on both charged impurities and phonons, 

for several concentrations of impurities as parameters

Figure 3. Temperature dependance of graphene electrical conductivity in case of relaxation on 

both charged impurities and phonons, for temperature ranges T << TBG (left) and T > TBG (right)

Figure 2. Temperature dependance of graphene electrical conductivity in case of relaxation on 

neutral impurities, for temperature ranges T << TBG (left) and T > TBG (right)

Figure 1. Temperature dependance of graphene electrical conductivity in case of relaxation on 

charged impurities, for temperature ranges T<<TBG (left) and T >TBG (right)
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In case of relaxation on phonons, we analyze the temperature ranges T

≥ TBG and T < TBG (where TBG is Bloch-Grüneisen temperature),

respectively:
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For numerical calculation of electrical conductivity, we shall adopt the

following values of parameters:

For lower and for higher temperatures, expression for electrical

conductivity is transformed, respectively:
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In the linear response theory within semiclassical approximation TP is

determined as:
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