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Abstract. Structural polymer transitions, caused by non-radiative processes, are considered in the 
frameworks of  both nonlinear solitonic excitations as well as the non-radiative quantum resonance. 
Our results show that the latter approach provides a much better description of cascade transport 
phenomena of double CC bonds in non-saturated hydrocarbons, kinetics of photochemical reactions 
of the isomer polymer transitions and some related phenomena. This fact clearly demonstrates that  
for a deeper understanding and insight into these processes the fully quantum description is 
indispensable.  
 

Introduction 

Various structural transformations of Q1D-molecular chains are characterized by local 
rearrangements of atoms between neighbor unit cells, with supposed significant role of low-
frequency skeletal vibrations and their higher overtones; namely, neighbor atoms are approaching 
each other thus increasing probability density for finding charged particles within chemical bonds, 
which might result in migrations of conjugated chemical bonds along Q1D- molecular chain as well 
as proton transfer from a carbon atom to its second neighbor, as it is the case for linear conjugated 
hydrocarbons [1].  

In this context non-radiative structural polymer transitions are considered, firstly in the 
framework of nonlinear solitonic excitations which can describe cascade transport phenomena of 
double CC bonds in non-saturated hydrocarbons, and secondly in the framework of quantum-
mechanical non-radiative resonance which can provide better understanding of kinetics of 
photochemical reactions of the isomer polymer transitions.  
  

Nonlinear Solitonic Excitations and Non-Radiative Structural Polymer Transitions 

As excited double CC bond migrates gradually along conjugated Q1D atomic chain, which passes 
through corresponding isomeric forms, this resembles on solitonic directive transport of charged 
particles (electrons and protons) along the chain.  

Having this in mind, as well as that interatomic distance is a dominant parameter, the starting 
point of our theoretical treatment is the equation for longitudinal oscillations of Q1D atomic chain 
in the field of many-electron energy-configuration hypersurface: 
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where M is the atomic mass, un is the displacement of n-th atom from its equilibrium position, while 
 is the potential force of the chain coupling with the many-electron energy-

configuration hypersurface Ee(x).  
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Also, as minima of the many-electron energy-configuration hypersurface Ee(x) correspond to 
maxima of probability density of the electronic subsystem 2),,( txreΨ , we can formulate this by 
variational equation with the varying Lagrange multiplier (λ): 
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Dynamics of Q1D chain, described by Eqs. 1 and 2, can be reduced into the well known 
closed system of Davydov equations [2] (see Eqs. 10 bellow), what implies that the classical 
approach is roughly speaking only ’a  half of the story’, so that for realistic description quantum 
properties of the system must be taken into account! 

Indeed, combining Eqs. 1 and 2 with the development: 
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where MkRc /0=  is the velocity of sound in the medium, while R0 is the interatomic distance. In 
the above equation there are two unknown variables, and it is necessary to include into analyisis 
also Schrodinger equation of the electronic subsystem, which has the following form in the Born-
Openheimer adiabatic approximation: 
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(in  unit system), with included operators of the kinetic energy of electronic subsystem 

( ) and all Coulomb interactions of electrons and ions/atomic nuclei (electron-ion ( ), electron-
electron ( ), and ion-ion ( )), while the phenomenologically introduced term ( ) represents 
resonant interaction with most probable isomer forms. It is well known that exact solution of the 
Eq. 5 does not exist, but in a first approximation this equation is solved without electron-electron 
interaction, which later appears as a correction in the Hartree-Fock or other approximations [1].  

1== hem

eT̂ eiV

eeV iiV rezV

As we are here interested in transport phenomena, then electron(vibron)-phonon interaction 
has most significant role and so we can neglect electron-electron interaction; also we supose that 
some excitation appeares only on the n-th molecular lattice site. Then, due to atomic non-
equilibrium displacements there is an increased overlap of electronic wavefunctions centered on 
the nearest molecular lattice sites, which significantly increases the excitation probality to appear 
on these neighbour sites within the approximation of nearest neighbours. The coupling of these 
excitations and colective oscillations of the molecular chain can result in migration of double CC 
bond gradually along conjugated chain of unsaturated hydrocarbons [1], which passes through 
corresponding isomeric forms [3], so that local chain deformations reflect themselves on the 
change of wavefunctions of the electronic subsystem.  

Therefore, it is completely legitimate to "decouple" in Hamiltonian the electron-ion Coulomb 
interactions regarding -th term and the others: n
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In accordance with the previous assumption, the displacement of the n-th molecular lattice site will 
change the Coulomb potential energy of the electrons localized on this site, which can be presented 
by the development [2]: , where  is a constant; 
besides, the rest of Coulomb potential energy ( , , ) remains approximately constant, 
which is reasonable if the excitation is localized on only one molecular lattice site [1].  
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Also, an action of the operator of the resonant interaction can be defined, if most probable 
isomeric transitions of unsaturated hydrocarbons with fulfiled 0Rx ±=Δ  are known i.e.: 
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where  is the energy of resonant interaction with equally probable states , while 
negative sign appears due to energy balanse.  
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By combining Eqs. 5 - 7 it follows: 
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where  and . The obtained Eq. 8 can be further 

transformed by applying the continuum approximation: 
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Finally, Eqs. 8, 9 and 4, together with formally adopted Lagrange multiplier in the form 
02 Rχλ = , result into well known closed system of Davydov equtions [2]: 
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which describe the soliton nonlinear excitations.  
The properties of the solutions of Eqs. 10, based on the classification of nonlinear charged 

autolocalized excitations in Q1D systems [4], were explored recently in the case of non-saturated 
hydrocarbon polymers, where it was shown that migration of double CC bond can be described by 
adiabatic large polarons – solitons, with optical phonons of the conjugated chains having major 
role in skeletal chain deformations during soliton-like cascade non-radiative resonant structural 
transitions via close intermediate participating isomeric states [5].  
 

Quantum-Mechanical Resonance and Non-Radiative Structural Polymer Transitions 

In the framework of the non-radiative structural polymer transitions described above, the 
phenomenon of quantum-mechanical resonance (via degenerate excited electronic-vibrational states 
of the close isomer forms) is especially interesting, as it points out indispensable role of quantum 
approach to description of these transitions. An explanation of this experimentally established 
phenomenon [6] was given by Gribov in his monograph [1]. Simply stated, by exciting polymer 
(thermally, irradiating...) there appears significant overlap of the electronic-vibrational 
wavefunctions of the two degenerate electronic-vibrational states (1) and (2) belonging to the close 
isomer forms of the polymer, which gives rise to periodical oscillation back-and-forth between 
these two close structural polymer states. 

 



 In this approach, the (quasi)classical problem of many-electron energy-configuration 
hypersurface Ee(x), not adiabatically well-defined when traversing between two adjacent local 
minima (1) and (2), is replaced by better defined problem of the two (virtually intersecting) 
isomeric many-electron hypersurfaces (hyperparaboloids) serving as potential hypersurfaces for the 
two vibrational (isomeric) problems. Then, by external perturbation of the isomers, at this very 
intersection the conditions for electronic-vibrational non-radiative resonant transitions between the 
two isomers (1) and (2) are achieved: these resonance electronic-vibrational states of two isomers 
are transformed from the corresponding (nonperturbed) products of electronic and vibrational 
stationary wavefunctions  into (perturbed) symmetrized 

stationary superpositions /
))(),(),(),(( )2()2()1()1( xxrxxr veve φφφφ

))(),()(),(( )2()2()1()1( xxrxxr veve φφφφ ± 2 , and their (nonperturbed) 
energies from resonating (equal) superpositions of the ground electronic energies of corresponding 
minima of many-electron energy-configuration hypersurface and vibrational energies of higher 
excited states (E +E =E +E ) into (perturbed) slightly split energy doublet (E +E +½ΔE, 
E +E –½ΔE), with ΔE = 2(E +E )S  (where electronic-vibrational overlap integral 

between the two resonating isomeric states (1,2) is S =
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components). 
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To describe the temporal aspect of this quantum-mechanical resonance correctly, we start 
from the nonstationary Schrodinger equation,  
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where HΔ  is a nondifferential step-like perturbation operator. Then the solution of the Eq. 11 is 
sought in the form [1]  
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with  ~ 1015 Hz and  ~ 109 Hz [1], while 
 and  are time-dependent functions, which can be determined by insertion of Eq. 12 into 

Eq. 11 (having in mind that electronic-vibrational wavefunctions of Eqs. 13 are solutions of Eq. 
14), so that we get two differential equations, 
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2)1()1( )(),( xxr ve φφ , when == )0()0( ba 21 ). By inserting Eqs. 13 and solutions for ,  into 
Eq. 12, with some algebriac manipulation the time-dependent probability density of the electronic-
vibrational wavefunction of the system is obtained: 
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On the basis of Eq. 15, it can be concluded that system alternatively excites two isomer- 
conformational states with periodicity τ = 1/Δω ~ 10-9 s, which is macroscopically manifested as a 
temporal change in concentration of the two isomers in the two-isomer polymer solution. Thus 
obtained probability of finding temporal evolution of the resonating doublet state of such a system, 
served to Gribov and colleagues [7,8] as a basis to explore the kinetics equations for populated 
polymer electronic-vibrational levels in photochemical reactions of isomer transitions.  

In particular, we shall here consider the model photochemical reaction of isomer transitions 
for two-isomeric polymer system with four energy levels, where the system is initially excited by 
some external optical perturbation HΔ , from the first-isomer ground energy state (3) into its 
excited energy state (1). This causes an intense overlap of the wavefunctions of the two excited 
isomer forms (1) and (2), which exibit resonant fluctuating back-and-forth chemical-isomer 
transitions (1) (2) (defined by corresponding time-dependent probabilities  and 

, cf. Eq. 15), also accompanied by spontaneous isomer deexcitations  
and  into corresponding isomer ground states (defined by time-independent probabilities 

 and , respectively). Accordingly, we easily obtain the system of kinetics equations 
describing these processes:  
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with concentrations nj (j = 1, ..., 4) of polymers occupying these four electronic-vibrational levels. 
By solving numerically the above system of equations (with model-adopted probabilities =w 0.7, 

0.1, 0.2, resonant frequency =13w =24w =Δω 109 Hz of fluctuating back-and-forth photochemical-
isomer transitions (1) (2), time scale in 10-9 s, and polymer isomer concentrations in relative units 

), graphical temporal dependance of the four relative polymer concentrations is obtained, 
cf. Fig. 1. 
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Fig.1. The kinetics of the time dependent polymer concentrations nj (in relative units) in the model 
photochemical reaction of isomer transitions, for two-isomeric polymer system with each isomer in 
possible ground and excited electronic-vibrational states (see Eq. 16 and the text for details). 



Inspecting this graph, one can see that the effect of the quantum-mechanical resonance 
between the first-isomer excited state (1) and the second-isomer excited state (2) (equally probable 
due to quantum-mechanical resonance), and subsequent external spontaneous deexcitation of the 
second-isomer excited state (2) into its ground state (4) increases the saturated population  with 
respect to . [The silent assumption here is that the bottom of the energy-configuration 
hypersurface Ee(x) of the second-isomer ground state (4) is lower than the first-isomer ground state 
(3), i.e. < , and consequently >  measured with respect to the coresponding minima 
of the vibrational potential wells. In combination with Maxwell-Boltzman distribution applied in 
saturation limit for equally populated vibrational levels  and , = 

, this gives n4 > n3.] 
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Conclusion  

Non-radiative structural polymer transitions were considered in this work within the two 
approaches, firstly in the framework of nonlinear solitonic excitations which can describe cascade 
transport phenomena of double CC bonds in non-saturated hydrocarbons, and secondly in the 
framework of quantum-mechanical non-radiative resonance. The comparision of the results 
obtained shows that the latter approach provides a much better description of the kinetics of 
photochemical reactions of the isomer polymer transitions. This fact clearly demonstrates that for a 
deeper understanding and insight into these processes quantum approach is indispensable.  
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