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Abstract. Contemporary trends in science and technology are characterized by integration of 
biological and technical systems, like in nanotechnology, nanobiology, and quantum medicine. In 
our case, we were motivated by a necessity to understand charge transport through microtubular 
cytoskeleton as a constitutive part of acupuncture system. The high frequency component of 
acupuncture currents, widely exploited in microwave resonance stimulation of acupuncture system 
in the past decade, implies that explanation of the cytoplasmatic conductivity should be sought in 
the framework of Frohlich theory. Accordingly, in this paper we critically analyze the problem of 
the microwave coherent longitudinal electrical oscillations as a theoretical basis for understanding 
soliton phenomena in microtubules, showing that charged kink-soliton nonlinear microtubular 
excitations might be a good candidate for charge transport in microtubules.  

Introduction 

Ionic acupuncture currents, and accompanying electromagnetic fields, have both ultralow frequency 
(ULF) [1] and microwave (MW) [2] components, i.e. the MW component is modulated by the ULF 
one, this being in overall agreement with the frequency and power windowing in tissue interactions 
with weak electromagnetic fields [3].  

The Ukrainian-Russian research and clinical practice in quantum-like microwave resonance 
therapy (MRT) at ~ 50-80 GHz, fundamentally quantum-informationally efficient even in very 
serious psychosomatic diseases [2,4], implies that acupuncture system is a macroscopic quantum 
dynamic structure differentiated at the locations of maximums of three-dimensional standing waves, 
formed as a result of the reflection of coherent microwave (~ 100 GHz [5]) Frohlich excitations of 
molecular subunits in the cell membranes, proteins, microtubules etc. - supported also by other 
investigations, which have demonstrated that differentiation of the gap-junction (GJ) channels (of 
higher density at acupuncture points and meridians [6]) is slightly sensitive to voltage [7]. The very 
mechanism of the ionic transport through GJ-channels of the acupuncture system is presumably 
classical, but it still remains the deep question how the continuity of the ionic acupuncture system is 
achieved through cytoskeleton structure between the two opposite cell GJ-channels.  

In this paper the problem of microwave coherent longitudinal electrical oscillations is 
considered as a theoretical basis for understanding the charged kink-soliton phenomena in 
microtubules, implying simultaneously the very nature of nondisipative MW electrical signals 
alongside microtubular cytoskeleton of acupuncture channels in MRT therapy.  
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Microwave Coherent Longitudinal Electrical Oscillations and Kink-Soliton Model of Charge 

Transport through Microtubules  

The encouraging results of MRT therapy in curing people have additionally stimulated researchers 
to address the problem of energy and charge transport in biological systems. However, the influence 
of microwave radiation on the human organism is not adequately explained, as well as the nature of 
acupuncture currents. The high frequency component of these currents in the MW range, as well as 
a strong response of human organism to EM radiation in this range, imply that Frohlich ideas might 
be a real theoretical framework to explain these phenomena. Frohlich phenomenologically 
considered the chain of dipoles coupled by Coulomb interactions and showed that the energy 
entering the system, at some critical value, is channeled into energy of longitudinal electrical 
oscillations; Frohlich named this process a condensation, and described it by coherent behavior of 
the system in the form of coherent longitudinal electrical oscillations, with part of the energy 
dissipated on thermalization of the system of dipoles [5]. 

Frohlich made his theoretical model by considering quasi-one-dimensional chains of the cell 
membranes. These biological structures are interesting from our point of view as well, for their 
structural similarity with the chains of dimers in microtubules. The appearance of coherent 
oscillations in this system is related to the mean polarizing field, resulted in the excitation of dimers 
at the point of entrance of the energy into the chain of dipoles. By virtue of Coulomb interactions, 
this field transfers the energy to other dipoles within the system, at the characteristic frequency 
determined by parameters of the physical system. The excited chain of dipoles represents a 
metastable state, supported by the energy of chemical reactions or external electrical field. As a 
consequence, an excitation of dipoles is transferred through the chain by some velocity, which can 
be interpreted as a movement of the polarizing field. 

In order to estimate the range of these electrical oscillations, we shall present a simple 
mathematical analysis assuming quasi-one-dimensionality (Q1D) of the system. We shall also take 
into consideration that some change in the concentration of dimers within the chain appears by 
entering of the external energy into the system of dipoles. The induced electrical field can be then 
evaluated from the Maxwell equation: divE = -ρ/εo = -nZe/εo, where n is the concentration of 
dimers in microtubules and Ze is the charge of dimers (Z = 18). As the force acting on a dimer is F 

= ZeE, where E = -nZex/ε0 follows from the above equation for an one-dimensional system, the 
equation of motion of the dimer reads: d

2
x/dt

2 + nZ
2
e

2
/εomd  = 0, where from the frequency of 

electrical oscillations immediately follows: ω  ≅ (nZ
2
e

2
/εomd)

1/2. For typical values of parameters 
[8], no = 1023 m-3, mD  = 5.5.10-23 kg, the frequency of oscillation of the induced electrical field is ωo 

= 1.5·1010 Hz. If we then assume that concentration of the dimers, on the location of excitation of 
the chain of dipoles, can raise for two orders of magnitude, n1 = 100 no, the upper limiting value of 
the frequency of electrical oscillations might reach ω1 = 1.5·1011 Hz. Accordingly, the frequency 
interval of electrical longitudinal oscillations of the system of dipoles is 1010 Hz ≤ ω ≤ 1011 Hz, 
which is in good agreement with previously obtained theoretical values. 

The role of coherent longitudinal electrical oscillations in the charge transport is very 
important, as the existence of coherent longitudinal electrical oscillations in the system of dipoles is 
a necessary condition for the appearance of the kink-soliton nonlinear excitations. Properties of 
solitons in Q1D systems, as well as conditions for their appearance were explored by Ivić and 
collaborators in detail [9]. According to their results, the autolocalization of a quasiparticle 
(electron, exciton, vibron) in the presence of a weak interaction with phonons represents theoretical 
framework to describe solitons. If the energy of quasiparticle is fairly higher than the characteristic 
energy of the phonon subsystem (condition of adiabaticity), then under weak coupling with phonons 
the appearance of solitons in Q1D systems is possible. For instance, in our case the energy released 
in chemical reactions excites dimers, fulfilling the condition of adiabaticity. This energy, in the 
form of amid-I excitation (vibron), is coupled with longitudinal coherent electrical oscillations, 
creating nonlinear excitation of the Q1D chain - soliton. This robust stable spatio-temporal 
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configuration continues to move through the chain, exciting dimers alternatively, corresponding in a 
real physical situation to the mobile polarizing field, which moves dimers from their equilibrium 
positions by Coulomb interactions. In order to describe these physical processes, it is necessary to 
consider all the relevant forces that act on the dipole. 

The model Hamiltonian, originally formulated and explored by Satarić [10] to inquire into 
dynamics of the dimers in microtubules, has the following form: 
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The first term above in brackets represents the kinetic energy associated with the longitudinal 
displacement un of n-th constituent dimers each of which has mass M; the second term arises from 
the restoring strain forces between adjacent dimers in microtubule; the third term corresponds to the 
double-well quartic potential, standardly used to describe critical phenomena (structural transitions 
in uniaxial ferroelectrics, ferromagnetics, etc.), where the model parameter A is typically a linear 
function of temperature and may change its sign at an instability temperature Tc and B is positive 
and temperature independent parameter; and the fourth term accounts for the influence of an 
intrinsic electric field E, generated by the giant dipole of the microtubular cylinder as a whole, on 
the n-th constituent dimer of the effective charge q. By solving the equation of motion which 
follows from the Hamiltonian Eq. 1, it can be shown [10] that the longitudinal displacement of the 
n-th dimer, in the presence of the damping force of the solvent liquid, F = -γ dun/dt, is given by  
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, where  vo = Ro MK /  is the sound 

velocity and v is the kink-soliton velocity, while R0  is a linear dimension of the dimer. It should be 
noted that 0ω = MK /  is the frequency of the longitudinal electrical oscillations, and σ = qB

1/2
A

-3/2
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The expression for the velocity of soliton propagation through the microtubule has the following 

form [10]: v = qE
MB

A

v 2/10 )
2

(
3

γ
, from which we see that the raise of intrinsic electric field gives rise 

to an increase of the kink-soliton velocity, thus contributing to its stabilization upon thermal 
fluctuations. 

In order to explain the charge transport mechanism in microtubules, it is necessary to start 
from the fact that the injected ion can be accelerated by the cell membrane potential [11] up to the 
velocities ~ 104 m/s, enough to excite kink-solitons after collisions of the ion with the polar 
molecule (tubuline dimer). By exciting kink-solitons, the dimer charges and microtubular periodic 
potential are perturbed, which is transferred through the long-range coulomb forces on the injected 
ionic charge. For the sake of mathematical simplification, this interaction is "replaced" by an 
interaction of the ion with phonons, out of which we shall take into account only longitudinal 
(acoustic) phonons. 

An adequate mathematical approach to the physical interaction of the coherent condensed 
modes and an ionic charge can be sought in the framework of quantum mechanics, which can be 
approved by the fact that dynamic time of the system (time for excitation of the kink-soliton) might 
be considered much shorter than decoherence time [12]. Our starting point in the analysis of the 
charge transport through MTs is the Hamiltonian Eq. 1. In order to adapt this Hamiltonian for 
further analysis, it is necessary to introduce the denotations for coordinate and momentum by virtue 
of boson operators:  
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so that Hamiltonian takes the form 
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where the following parameters were introduced:  
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Further analysis is a standard one, through elimination of the linear part X3 of the Hamiltonian Eq. 
2, which corresponds physically to the problem of nonlinear excitations of the system, i.e. solitons 

[13]. So, we apply the transformation UU

s HeeH
−= , where  ( )∑ +−=
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of the unitary operator can be found from the request for elimination of the linear term, while index 
n enumerates all monomers of the microtubular chain, so that: 
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From the viewpoint of our problem, the above Hamiltonian is not sufficient to describe the 
charge transport, and it is therefore necessary to introduce a fermion (electronic) subsystem, defined 
as follows:  

   ∑ +
=

k

kkke aaEH                                                              (4) 

The ionic charge injected in MT interacts with nonlinear excitations (solitons) via 
longitudinal acoustic phonons, and in order to simplify this interaction mathematically, we shall 
diagonalize the Hamiltonian Eq. 3 by direct Fourier transform of the boson operators:  
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where the operators bk, bk
+ are Fourier transforms of the boson operators. With so defined 

denotations, the Hamiltonian of the boson subsystem related to solitons has the following form: 
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Interaction of the two described subsystems is expressed mathematically by the 
Hamiltonian:  
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where F(q) is the structure factor which characterizes interaction of electrons with longitudinal 
acoustic phonons, and N is the number of tubuline dimers within MT. 

The appearance of the charge within MT introduces short non-equilibrium distribution of the 
physical parameters in the system, which can be treated conveniently by the methods of 
nonequilibrium statistical physics, developed by Zubarev: therefore we shall solve the kinetic 
equation describing decrease in the number of charges due to interaction with MT [14], 
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where nk is the number of electrons with the wavenumber k, and H is the Hamiltonian of the system: 
H = Hs + He + Hint. The term In represents nonequilibrium correction determined as follows,                              
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+ =−= kkkkkkkkkkkk bbbbbbbb δδ ,,, , which enables the similar application of the 

Weyl identity to boson operators. By not entering deeper in the calculation of the integral of the 
nonequilibrium correction, let us state that application of the equation [ ] 0, =

qk Hn  (an averaging 

over equilibrium boson ensemble), Vick theorem, and integration over small parameter 0→ε , gives 
rise to the following equation for the average number of electrons: 
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where Nq is the equilibrium number of the bosons with the wavenumber q, and nk+q, nk-q and nk are 
the corresponding numbers of fermions (electrons), while 
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velocities of chaotic movements of electrons. The above rather complicated expression can be 
simplified for practical purposes, on the assumption that majority of electrons are concentrated 
around most probable wavenumber k and that longitudinal coherent excitations have the same 
wavenumber q, giving rise 
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Now, by inserting Eq. 8, it is possible to obtain electrical current through MT: 
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dt
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I

k

MT =                                                                    (9) 

It is interesting to note that the application of typical values of the parameters - 

( ) 482
101.2 −⋅≅qF J2 [9], 241091.2

~ −⋅≅∆ q J [5], 19106.1 −⋅=e C, 5.1≅qN  (for 300=T K, 
4101.4 −⋅=qωh eV) [5], 1≅− −+ qkqk nn  (roughly one charge per MT), 1300≅N  (number of 

constituent dimers in 13 protofilaments of the ~ 1 µm microtubular length) [16] - gives an 
estimation of the electrical current through MT, IMT ~ 5 pA. Then the upper limit of the electrical 
current through an acupuncture channel, of estimated ~ 1 mm2 cross-section [17] and estimated 
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upper surface density of MTs less than 109 MT/mm2 (for 25 nm MT´s outer diameter [16]), is Iacu < 
109·IMT ~ 5 mA, which is in good agreement with the experimental data [17]. 

Conclusion 

The encouraging results on the microwave resonance stimulation of the acupuncture system in 
curing people have additionally stimulated researchers to address the problem of energy and charge 
transport in biological systems. However, the influence of microwave radiation on human organism 
is still not adequately explained, as well as the nature of acupuncture currents, although Frohlich 
ideas have set a good theoretical framework for explanation of these phenomena. In this paper we 
have critically analyzed the problem of longitudinal electrical oscillations as a theoretical basis for 
understanding the soliton phenomenon in microtubules, showing that nonlinear charged kink-
solitons might be a good candidate for charge transport in microtubular cytoskeleton as a 
constitutive part of acupuncture system - of importance for quantum medicine, nanobiology and 
nanotechnology. 
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