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Polymer Conformational Transitions:
A Quantum Decoherence Theory Approach
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ABSTRACT

In this paper we describe the problem of polymer conformational transitions in the framework
of the so-called quantum decoherence theory. We propose a rather qualitative scenario yet bearing
generality in the context of the quantum decoherence theory. It seems that our proposal provides a
promising basis for the solution-in-principle of this (semi-)classically hard problem of the polymer
kinetics.

1. INTRODUCTION

Conformation is one of the most important features of polymer chains, and due to the
properties dependent on conformation, very important in consideration of polymer materials, as
well [1]. In parallel with standard issues of crystal- and amorphous bulk-characterization, this is
especially valid for modern polymer composites, nano-structured materials and biomaterials.

But, the size of one macromolecule, with a large number of atoms and groups, able to take
different configurations in space without scission of constitutional chemical bonds (what we
understand as different conformations) brings problems to a different level comparing the classical
approach of the conformation in organic chemistry. The large number of possible states of the
system indicates statistical-mechanical approach, and strict determinism of the chemical structure
leads to the quantum mechanical energy considerations.

Extreme examples for these two approaches are "random flight" model of polymer chain and
ab initio calculation of polymer structure. The random flight model represents a macromolecule as a
statistical ensemble of particles, similar to the well-known models of gas but with the effective
geometrical parameters of the system, e.g. radius of gyration (R,) equivalent to the time or ensemble
averaged values for the coiled chain. Obviously, many constitutive features, important for the
understanding of material properties, are lost in such a model. On the other hand, in spite of
enormous increase of the power of modern computers, ab initio calculation is still possible only for
short segments of a chain.

The first, who succeeded to incorporate within the statistical mechanical models described
above some essential features of the real chain, was Flory with his excluded volume theory in 1949
[2]. The theory considers interactions of the chain links and the solvent molecules as well. It offers
an elegant solution for the case when long-range chain interactions are balanced with solvent
interactions (so called @-state), and so, only short-range interactions govern the conformational
geometry of the system. In essence, it is one of rear solutions for simultaneous interaction of several
bodies, which is a very hard problem in physics. Later, Volkenstein, starting from the quantum
mechanical approach developed the method for estimation of possible conformational states,
depending on short-range interactions, called theory of rotational isomeric states [3]. In fact, the two
approaches are complementary and later Flory united them in his method for the calculation of
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conformational properties of polymer chains [4]. The method gave excellent agreements with
experimental results obtained from light scattering and viscosity measurements for coiled chains in
diluted solutions and neutron scattering in amorphous bulk materials [5]. Also scaling law from the
excluded volume theory, e.g. scaling of R, with a degree of polymerization N, has been checked by
many authors and elaborated in some new mathematically extended theories, but all obtained results
are practically the same as the result Flory obtained in his theory [6]. Still, there are several silent
aspects in such an approach to chain conformation that should be reconsidered. The first is
dynamics of the conformation transitions. Second, but following from the first, is the influence of
conformational organization hierarchy on such transitions. The third is the extension of such models
to biopolymers, in particular to native state of proteins. In our opinion, all three aspects are
connected to quantum decoherence and transitions from quantum to classical.

1.1 Conformational transitions and the chain-folding problem

The method for the calculation of conformational dependent chain properties, considered
above, describes conformational states of the system based on possible rotational states of chain
bonds. It does not describe transitions between possible states of the system, i.e. transitions from
one conformation to another. The first is a thermodynamic and the second is a kinetic aspect of the
problem. The conformation change of long flexible chain, by random rotations around chain bonds
due to thermal vibrations under the influence of the environment, has been considered
understandable by itself, and included as a silent aspect in many analyses. But, literally understood
it can lead to different artifacts.

This has been illustrated by Levinthal, who considered the probability of folding a protein
molecule from coiled to its native conformation [7]. Assuming 2n torsional angles of an n-residue
protein, each having three stabile rotational states, this yields 3*" ~ 10" possible conformations for
the chain (even with rather gross underestimating). If a protein can explore new conformations in a
random way, at the rate that single bond can rotate, it can find approximately 10'* conformations
per seconds, which is here an overestimating. We can then calculate the time #(s) required for a
protein to explore all the conformations available to it: # = 10"/10"*. For a rather small protein of n =
100 residues, one obtains # = 10*” s, which is immensely more than the apparent age of the universe
("Levinthal paradox"). Yet, according to some experiments, proteins can fold to their native
conformation in less than a few seconds [8]. It follows that conformational changes of proteins, due
to thermal, solvent and other influences of the environment, does not occur in a random way (as e.g.
movements of gas particles) - but fold to their native conformation in some sort of ordered set of
pathways in which the approach to the native state is accompanied by a sharp increasing
conformational stability - this being one of the most crucial questions in all life sciences. Such a
view some authors translate to the problem of estimations of some long range-interactions
responsible in a given moment for the direction of the process [9].

The most of proteins have a part of bonds twisted (by rotation around backbone bonds - for
some angle) to helical conformation. Between the helices are segments of plated sheet
conformations or just turns. Such conformational elements (called secondary structure of a protein)
make 3D-arrangement in space called tertiary structure. For example, globular proteins by folding
the elements of secondary structure together make a globular shape of the molecule. The first who
pointed to such hierarchy of conformational structures was Pauling in 1951, building in that way
one of the landmarks of present structural biochemistry [10]. It should be pointed here that the
density of packing secondary structure elements by folding into globular proteins shape is very
dense, similar to the density of organic crystals [1]; sometimes such architecture of the protein
molecule is supported by (only) several chemical bonds, linking elements of the secondary
structure. The native structure of proteins is determined by tertiary organization; indeed, by
unfolding protein chains due to heat or chemicals, they are denatured, not recognized and rejected
by the organism [11-14]. The first who determined the tertiary structure were Perutz (on
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hemoglobin) and Kendrew (on mioglobin) by X-ray diffraction studies; Perutz started research on
space architecture of hemoglobin already in 1937, but the work was completed no earlier than 1957
(and of course, after Pauling provided a theoretical understanding of the secondary structure)
[12,13]. While first who succeeded in renaturation of proteins, in his classical experiment of
folding-back a protein to native structure, was Anfinsen in 1957, and the first who gave theoretical
explanation for folding, based on statistical mechanics, was Dill [1,14].

In one quite different approach, from the field of materials science, in the late 1950s Keller
succeeded in preparing single crystals of polyethylene, by nucleation in dilute solutions [15]. The
crystals were platen-like shaped and of the order of 10-20 nm thick. Amazingly, electron diffraction
analysis showed that the polymer chains in the crystal body were essentially perpendicular to the
large flat faces of the crystal. Since the chains were known to have contour lengths of about 200
nm, and the thickness of the single crystal was ten times smaller, Keller concluded that the polymer
molecules in the crystals had to be folded back upon themselves. Again one faces the problem of
folding of polymer chains, confirming that it is quite a fundamental issue of polymer structure.

In this paper we seek for a solution-in-principle of the long-standing problem of the polymer
folding. As we saw above this problem was considered by Levinthal as (semi-)classicaly
intractable. However, herewith, we address to the fundamentals of the so-called quantum
decoherence theory in order to make the problem tractable, and we propose quantum scenario as the
candidate for a solution of the problem at hand. Our proposals are rather qualitative yet bearing
generality in the context of the decoherence theory. Therefore, the estimates for the minimum time
necessary for the polymer-conformation change cannot be made definite without referring to the
more elaborate physical models. Yet, our estimates are not expected to fail in their order of
magnitude, therefore making our proposals a promising basis for the solution-in-principle of the
(semi-)classically hard problem of the polymer-conformation change.

2. THE (SEMI-)CLASSICAL MODEL

Due to the Born-Openheimer adiabatic approximation, the molecules can be ascribed the
definite geometrical structure [16]. This geometrical visualization is a general feature of all kinds of
molecules, from small to complex macro-ones. As to the latter, the vertices of the corresponding
geometrical structure are occupied by groups of atoms or by smaller molecules.

Geometrically, the shape of a molecule can be continuously changed in 3D space. However,
only a restricted set of the possible geometrical shapes are found experimentally. Particularly, the
transformations of special interest are the so-called conformational transformations preserving the
spatial distances and angles between the adjacent vertices in the geometrical shape of a molecule.
Different shapes mutually related by conformational transformations are referred to as
conformations. Every conformation is determined by the relative position in space of vortices, thus
representing a physical characteristic, K, of a molecule as a whole. Therefore, as to the
conformation of a molecule, one actually deals with a one-dimensional system, {K}. The different
“values” of the variable K (i.e. the different conformations ;) can be ascribed to different values of
the molecular electronic energy as presented in Fig. 1.

The local minima of the potential-energy plot V(K), Fig. 1, represent the set of preferred
conformations for a molecule in a given physical situation. Actually, in a solution, the
macromolecules exhibit both existence and stability of conformations from a given set of possible
shapes, which are exactly presented by the local minima of the potential energy V(K).

Needless to say, the geometrical shape of a molecule is not frozen, thus giving rise to the fast
oscillations of the shape around the actual conformation - e.g., k&; in Fig. 1. Therefore, the one-
dimensional system K can be modeled as a one-dimensional quasiparticle with the position K and
the conjugate momentum P, oscillating with some typical frequency w; around the bottom of the
actual local minimum, say k; of Fig. 1.
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Fig. 1. The molecular electronic energy as a potential energy for the adiabatically decoupled
(vibrational and) one-dimensional conformational system K. The local minima are the semi-
classically stable “positions” in the K-space. However, rather fast transitions from initial to final
conformations (k; — k,, with corresponding conservation laws and selection rules fulfilled) cannot

be treated (semi-)classically, but necessarily within the general framework of the quantum
decoherence theory (see Sect. 3.2 for our approach).

The (semi-)classical model of Fig. 1 encapsulates the up-to-date experimental evidence on the
conformations of macromolecules, distinguishing the stability of the preferred set of conformations
of a molecule in a solution’. In a “stationary state” when no external action on the system is
performed, the conformations are preserved due to, among else, the high-energy barrier between the
adjacent local minima of Fig. 1. Physically, this means that the oscillator does not have enough
energy to skip over the barrier in order to change its geometrical shape; such shape-transitions
(conformation changes) can be formally presented by k;, — &, (the indices i and f standing for

initial and final conformations, respectively).

However, some external actions on the solution (e.g., thermal, compositional, optical, etc.)
result in a change of conformation of a molecule that can be experimentally observed/verified.
Thus, effectively, the external action gives rise to the transitions of the type k;, — k, for a molecule

in a solution, in general giving rise to different kinds of transformations for different molecules.
These transformations can take different time intervals to affect themselves, which can be estimated
from the experimental data. First, there are the spectroscopic data suggesting the orders of 10” s for
the conformation changes [17]. Second, the duration of typical experiments in this regard (protein
renaturing [8]) is of the order of 1 s. Needless to say, the time interval (107 s, 10° s) is in sharp
contradistinction with the existing (semi-)classical predictions. And this is the very heart of the
polymer conformation transitions (PCT).

Actually, from a (semi-)classical point of view, the change of conformations requires a
sequence of local non-commuting successive transformations (rotations), whose number is so /arge
that the total time for exploring all the conformations available becomes unreasonably long [7].
Needless to say, every single elementary transformation (local rotation) is a continuous map in 3D
space. Therefore, the whole transformation (net transformation of the shape of a molecule),
k; — k,, can be ascribed to the unique trajectory in K -space connecting the initial (4;) and the

' In a solution, a molecule cannot take arbitrary geometrical shape. Only the conformations from a preferred set are
available. Actually, it seems that the local interactions (between the macromolecule and the solvent molecules) give
rise to both, the choice of the preferred set of conformations and the stability of conformations; as to the latter, in a
solution, when no external action on the system is performed, a macromolecule maintains its geometrical shape exactly
as presented by the model of Fig. 1.
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final (k,) conformation. Given that the net transformation can be performed only in a succession of
n, elementary transformations (local rotations), the problem arises when, even for arbitrarily small
time interval, z,, of the elementary operations, the time necessary for the net transformation,

T=n,-7,,1s unreasonably long time interval.

3. QUANTUM MECHANICAL MODEL

Our approach to PCT bears complete generality. We refer neither to the specific polymers (or
solutions) nor to the specific conformations. In this section we give the basics of our approach and
prepare for the details of the scenario, which might be the basis for the final solution of PCT.

3.1 Quantum decoherence effect: the fundamentals

Fulfilling the conditions of existence and of stability of conformations is our first objective.
Fortunately, a straightforward application of the so-called decoherence theory [18] suffices in this
respect.

The general physical situation may be presented as follows. A quantum system S is in
unavoidable interaction with its environment E. The composite system S+E is subject to the
Schrodinger law. However, then, neither S nor £ is subject to the Schrodinger law. Such systems are
referred to as the open quantum systems. The task is to calculate the (open) system’s (S’s) state - the

so-called “reduced statistical operator” - denoted by pg . The (sub)system’s state is defined as:

ps(t) = tr, (U(0)ps. s (¢ = 0)U" (1)) (1)

where U(¢) is the unitary operator of evolution in time, Ps.p(t=0) is the initial state of S+E

system, while “#r, ” refers to the integrating over the environmental degrees of freedom.

Under the set of special conditions [19], one can observe the occurrence of the decoherence
effect defined loosely as:

(1) 1in the representation of a special orthonormalized basis, {| i> S} of the (Hilbert) state space of S

- the so-called “pointer basis” - one obtains disappearance of the off-diagonal elements of p :
lim, pg,..(6)=0,m#m' (2)

(i1) with the requirement of stability (“robustness”) of the elements of the pointer basis:

I:Iim i>S|¢>E :|i>5|¢i>E (3)
or equivalently
U0li)le), =[i;le.®), “

Then, effectively, there appear the environment-induced superselection rules (decoherence), which
forbid the coherent superpositions of certain states of the system S. In other words, decoherence
establishes existence and robustness of a preferred set of states - e.g. of the “pointer basis” - of an
open system.

If the initial state of S is a coherent superposition,

1,//> = 20i|i>s , then the decoherence process can

be presented as:

)= 2eli)y =2 ps = 2fel i) (i )
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where 7, , the decoherence time, is the order of magnitude of the unfolding the decoherence
process. Eq. 5 exhibits the loss of the initial coherence - which justifies the term decoherence [18].
Now, as to our task, it suffices properly to model the interaction Hamiltonian, H._, in order to

int >
deduce (i) and (i1), i.e. Eq. 5 for the composite system “conformation + environment (K+E)”.
Needless to say, with this, we would deduce the phenomenologically observed existence and
stability of a preferred set of conformations.

Without employing any details, we emphasize that virtually independent on the model of the
system E, the following simplest separable interaction Hamiltonian fulfills our requirements (being
necessary condition for decoherence effect) [19]:

H, =CK,®D,, (6)

where C stands for the coupling constant (determining the strength of interaction),
K, = Zkl. |ki>]( < <k1~| is the conformation observable of the quantum system K, and D, is arbitrary

observable of the environment £.

3.2 General quantum-mechanical scenario for polymer conformational transitions

By applying the fundamentals of the quantum decoherence theory, we are able to reproduce
the basics of the classical model for the macromolecule conformations for the stationary situation
when no external action on the system is performed. However, our problem refers to the situations
when the external action on the system results in the change of the conformations, which is the
subject of this subsection.

In this subsection, we outline the sufficiently general quantum-mechanical model that may
account for the effect of change of conformation in short time intervals - in obvious
contradistinction with the results of the (semi-)classical physics analysis. The generality of our
considerations allows applicability of the model for different yet realistic physical situations, thus
eventually presenting a basis for the final solution of the problem at hand.

The condition (i1) of Sect. 3.1 exhibits a special characteristic of the decoherence process:
decoherence tends to freeze dynamics of an open system, once the system is in a “preferred” state.
Therefore, our task here reads: to model the external influence on the system K+FE so as to both first
to break and later to re-establish the effect of the decoherence due to the interaction, Eq. 6.

We introduce the following, physically and phenomenologically plausible assumptions: (i) the
external influence is much stronger than the interaction Eq. 6, and (ii) affer the external action, the
composite system relaxes to equilibrium (a stationary state) determined by the model Eq. 6.

Before the external action, K’s stationary state reads:

P :Z|ci|2|kz’>z< « (k] (7)

The strong external action on the K+E system of the duration T, (providing, for instance, the
external energy AE’ to skip over barrier in order to change its conformations from £; to k; in two-
conformational example of Fig. 1) gives rise to the following nonstationary state transformation for
the system K:

Px = Pi's (®)

? The interaction Hamiltonian (6) is the simplest possible form of the class of the so-called separable interactions [19],

equivalent in its spectral form to more general form H =Y CA. ®B ., as long as A _,;1 =0,
int i“7Ki Ei K; K]-
i

[l;’ E> B E, ] =0, for every pair of indices i,j, and if the conformations {| kl.> K} represent a common eigenbasis for the

set {Am} :
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so that, in general:

[PisPi 1% 0. )
After the external action, the composite system K+E’ is subject to the nonstationary

relaxation process of the duration T, (taking-off, for instance, the excess external energy AE"" to

fulfill energy conservation law in two-conformational transition k; — k, of Fig. 1) which in general

gives rise to another state change of K
P! P (10)

The relaxation process re-establishes the stationary state defined by Eq. (6), which - and this
is the point strongly to be emphasized — guarantees the existence and stability of conformations.
That is, the final state of the system K reads:

p"= ZWI- kD k. « <Kil- (11)

The occurrence of the final state of the form Eq. 11 can be easily proved [19].
Now, the point is in the difference of the initial p, and the final p, ". Both states refer to the

conformations |ki>]( guaranteeing their existence and stability. However, the relative number

(concentration) of different conformations - i.e. the “statistical weights”, w; - are likely to be
different, w, #|c,[*. In effect, there has occurred a change of conformation, at least for a sample of

molecules in a solution - which is exactly the effect we search for.
The total duration of the effect reads:

r=7T_+T,+7,, (12)

ext rel
where 7, refers to the duration of decoherence effect: p, "— p, ". Since it is expectable [18]:

T +T

ext rel

>> 1, (13)

the duration of the conformation change in our model is of the order of T,,+T,, - in obvious

ext rel

contradistinction with the estimates based on the (semi-)classical analysis.

4. DISCUSSION

The core of the (semi-)classically addressed problem is the unreasonably long time necessary
for the change of conformations of a polymer in a solution. Therefore, every sound physical model
overcoming this problem deserves consideration as a potential basis of the final solution of the
problem. To this end, the scenario of Sect. 3.2 obeys this criterion. The new element in this regard
is that we employ the fully quantum-mechanical models for the open system of interest, K, in
unavoidable interaction with its environment, E. More precisely: we employ the foundations of the
decoherence theory for both, existence and stability of the conformations, and for the processes of
the change of conformations in the nonstationary state of the composite system K + E .

Without referring to a concrete model of the composite system K+ E (i.e. K+E'), one
cannot make sufficiently general estimates of the characteristic time intervals for different processes
analyzed in Sect. 3.2. Fortunately enough, from the general decoherence theory, it is expectable
(plausible to suppose) that the decoherence time 7, is by many orders of magnitude the shortest
time interval for the scenarios (models) considered. Therefore, it is plausible to suppose that
generally, the duration of the change of conformations is of the order of 7 + T _,, as emphasized in

ext rel >

Sect. 3.2. This observation, in our opinion, encourages further investigations of the model in order
to make the connection to the concrete physicochemical situations that are in principle
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experimentally testable. Needless to say, only such kind of the experimental tests might represent
the decisive step in resolving the problem of interest.

It should be also pointed out, that the proposed quantum-decoherence model might be
generalized on any quantum system and its quasiparticle's excitations, as the analogous energy-state
plot, E(¢) (cf. Fig. 1) is the general quantum-informational characteristics of any quantum-system

in Feynman's representation [20]. Therefore, this poses a new light on the existence and stability of
any kind of the condensed-state more or less delocalized quasiparticles (electrons, phonons,
conformones, etc.) and their rather fast excitations (with characteristic times and frequencies, as a
consequence, only slightly dependent on dimensions of the condensed-state system [17]) in the
proposed framework of the general quantum decoherence theory - implying a fuzzy borderline
between quantum coherent (nonstationary) and semi-classical decoherent (stationary)
manifestations of any macroscopic condensed-state system (see for instance [21]).

5. CONCLUSION

Employing the fundamentals of the decoherence theory, we are able to reproduce both,
existence and stability of the polymers conformations, and the short time scales for the quantum-
mechanical processes resulting effectively in conformational transitions. The proposed model is
certainly not exhaustive yet providing us possibility to overcome the main obstacle in resolving the
problem of interest - the problem of (semi-)classically unreasonably long time necessary for the
change of conformations of the polymers in a solution. Also, it is general enough to provide wider
framework for both existence/stability and fast excitations of any kind of the condensed-state
delocalized quasiparticles.
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