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Abstract. A modeling of verbal modulation of information is an important but extremely complex task, still waiting to 
be fully accomplished in future hierarchical neural networks. However, it seems that basic brain mechanisms 
responsible for semantic/pragmatic/syntactic organization of natural language are known (Pribram, 1977). According to 
the oscillator model of Ellias and Grossberg (1975), the EEG rhythmicity is realistically predicted in such a way that an 
increase in the input causes an increase in the frequency of oscillations, and decrease in their amplitude, offering an 
unified explanation of EEG waves ranging from δ to γ) - which might basically be also the mechanism of information 
ascending upon the frontolimbic-amplification from the lower-frequency (δ, θ) unconscious form of primordial 
subliminal thought to the higher-frequency (α, β, γ) conscious thought (Rakovic, 1997)! It should be then pointed out 
that frontolimbic-amplification mechanism of pragmatic processing, in combination with the increase of dominant EEG 
frequency from δ to γ brainwaves during an ontogenesis (Petersen et al, 1974), implies that the mother tongue is 
generally memorized at low-frequency δ and θ levels (later being unconscious in adults), in contrast to second and even 
further languages in bilinguals and multilinguals which are memorized at high-frequency α, β, and γ levels (later being 
conscious in adults). This implies that second and further languages are being hardly incorporating at unconscious 
(automatic) levels, save only from contextual learning which enables unconscious processing of contexts - which might 
provide differences of the language learning in childhood and adulthood, as well as in school and in living environment 
(Rakovic, 1997)! 
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The prevailing scientific paradigm considers information processing inside the central nervous system 
as occurring through hierarchically organized and interconnected neural networks. For instance, the visual 
information is firstly hierarchically processed at the level of retina (from the photoreceptory rods and cones, 
to the ganglion cells), to be then hierarchically proceeded within the levels of primary, secondary, and 
tertiary sensory and interpretatory cortical regions (all of them being additionally constituted of hierarchies 
of several neural networks) [1]. Interconnections within neural networks and between the neighboring neural 
networks in this hierarchy are achieved by synapses (one neuron having approximately 40,000 synaptic 
connections with neighbors), which can be excitatory or inhibitory. During the learning process, apart from 
the brain's hierarchy of neural networks, a significant role in global distribution and memorizing (over the 
whole cortex) of hierarchically processed information is played by brainwaves [2]. 

Along with the development of experimental techniques enabling physiological investigation of 
interactions of hierarchically interconnected neighboring levels of biological neural networks, significant 
contribution in establishing the neural network paradigm was given by theoretical breakthroughs in this field 
during the past two decades [3]. The potential good properties of neural networks have inspired many 
scientists to propose them as a solution for most problems: with sufficiently big network and adequate 
training, the networks could accomplish an arbitrary task, without knowing a detailed mathematical 
algorithm of the problem. Currently, such expectations are far from realization. To date the real solution is in 
finding corresponding network topology and training rules for every particular task; the past practical 
experiences with training of artificial neural networks imply [4] the necessity for learning not to last too 
long, and not to have too many hidden neurons within the network, as this gives rise to overtraining of the 
network and tendency to memorize the input/output vector pairs only, without generalization (learning) - 
with no capability to recognize some new input vector for which not being previously trained! 

However, the brain consists of ~1010 neurons but simultaneously it is very flexible, which clearly 
implies its somewhat different organization in respect to artificial neural networks. Really, although the 
artificial neural networks appeared as a concept of duplication of biological neural networks, many of the 
commercial networks do not have any essential similarity with the biological ones - which are organized as 
hierarchical neural networks! 



HIERARCHICAL NEURAL NETWORKS VERSUS BRAINWAVES: 
PROSPECTS FOR THEORETICAL PSYCHOLOGY 
 

Most of the artificial neural networks have a maximum of interconnections between functionally 
nonspecialized neurons of the neighboring layers, where every neuron of one layer is connected to all 
neurons of the neighboring layers (so called massive parallelism). However, in hierarchical neural networks 
interconnections between neurons of neighboring layers are much more sparse and localized. 

The advatage of a hierarchical neural network structure is that the functionally specialized neurons of 
each layer process only a limited amount of information from the previous layer. The total global situation is 
then pieced together as one ascends from one hierarchical layer to the next. 

Such approach requires a spectacularly smaller number of processing elements than would be required 
by a network with massive parallelism of interconnections between neighboring layers. It should be pointed 
out that hierarchical neural networks are only appropriate in those situations where the inputs to the network 
have low-level, intermediate-level, and high-level structures that can be consistently related to one another, 
as images or sounds from outdoor scenes (random data, however, do not have such structure). That is the 
reason why biological neural networks are organized as hierarchical networks! 

A significant contribution in modeling biological hierarchical neural networks was given by 
Grossberg and his collaborators [5], working on hierarchical architecture adapted for modeling perception of 
illumination of a visual field, based on the experimental neuropsychological data about the visual feature 
extractors; the numerical simulations have shown that such a network can recognize different psychological 
illusions too, related to the problem of surface illumination. By introducing excitatory and inhibitory loops 
for intra-columnar interactions, as well as inter-columnar feedback connectivity within columnar structure of 
the visual cortex, Grossberg and Somers [6] predicted electroencephalographic (EEG) γ-oscillations (~40 
Hz) of their hierarchical network, generated in response to steady-state-inputs. A generalization of this 
retinocortical model by Ögmen and his collaborators [7] produced additionally EEG α-rhythm (~10 Hz) in 
response to intrinsic-noise sources (in the absence of external inputs), and flash visual evoked potentials 
(FVEP) of various relative magnitudes and latencies (P40, N70, P100, N130, P170) in response to flash 
inputs. It should be pointed out that their study makes predictions for network activities that can be translated 
into EEG signals, providing an important missing link between single-neuron activities and the ensemble 
properties of the biological neural networks! 

A significant contribution in modeling biological hierarchical neural networks was given by Freeman 
and his collaborators [8] too. By adopting a system of feedback on different hierarchical levels of the 
network, the neural network which reflects the dynamics of olfaction was obtained. As a result of modeling, 
strange attractors with multiple "wings" were obtained: the central part of attractor can be interpreted as a 
basal chaotic electric activity of the olfactory system (simulating the basal brainwave EEG activity without 
olfactory stimulus), while the wings of attractor can be interpreted as "near-limit cycles", corresponding to 
quasiperiodic states of the induced brainwave EP activities upon the various olfactory stimuli, implying that 
EEG enables brain's quicker responses upon stimuli. 

Hierarchical neural networks are also a biological basis of learning and memory, as the 
aforementioned types of perception require a previous training (learning) of the network, accompanied with 
memorizing of the information! In the case of olfactory system, Freeman and his collaborators have 
proposed the following hierarchical mechanism of learning and memory [9]. Excitatory neurons are 
activated, strengthening their joint synapses in accordance with Hebb's rule [10]: a nerve cell assembly 
(NCA) is thus created comprising perhaps 1-5% of the total in the olfactory bulb. Thereafter, excitation of 
any portion of the NCA by receptors sensitive to a particular odor tends to activate the whole assembly. 

So, it seems that learning in olfactory system is related to generation of corresponding activation of a 
local cell assembly in the olfactory bulb, while memorizing and recall is related to the whole bulb. The very 
activation of only a part of the odor-specific receptors results in hierarchical activation of the local cell 
assembly, followed by activation of the whole olfactory bulb. The similar is characteristics of the learning 
process in general [2]: while something is learned, information is hierarchically processed in primary, 
secondary, and tertiary brain areas, being afterwards spread by brainwaves over the whole cortex; however, 
when learning is achieved (so called habituation), the same visual stimulus can only be found in the visual 
system. 

This also implies that brainwaves play a significant role in distribution of information across the 
whole cortex, and its memorizing. Of particular interest in this process is also extended reticular-thalamic 
activating system (ERTAS) [11],, as a hierarchical system of neural networks which compares currently 
processed information with the one memorized in the cortex, giving priority and amplifying one piece of 



information to the conscious frequency levels of α, β, and γ brainwaves; the rest of information remain 
nonamplified at unconscious frequency δ and θ levels (it should be stressed that the oscillator model of Ellias 
and Grossberg [12] really predicts EEG rhythmicity in such a way that an increase in the input causes an 
increase in the frequency of oscillations, and decrease in their amplitude, offering an unified explanation of 
EEG waves ranging from δ to γ). This might basically be also the mechanism of "emotional coloring" of 
some information, and its ascending upon the ERTAS-amplification from the lower-frequency (δ, θ) 
unconscious form of primordial subliminal thought to the higher-frequency (α, β, γ) conscious thought! So, it 
seems that there are two levels of information coding and memorizing in biological neural networks [13,14]: 
spatio-temporal level (responsible for spatially distributed memory, through dynamic strengthening and 
weakening of synapses, in accordance with Hebb's rule) and ultralowfrequency level (responsible for 
normally conscious and unconscious states and their interactions, through the ultralowfrequency modulation 
of the first level). 

EEG MATURATION AND MODEL OF CONTEXTUAL LANGUAGE LEARNING 

Accordingly, a thinking process could be separated in at least two parts: first, the selection of one 
piece of information out of complete one processed by hierarchical structure of brain's neural networks, and 
its amplification to the conscious level, and second, the problem solving related to this piece of information. 
The first process is accompanied by emotional and verbal modulation of information by nondominant 
(normally right) and dominant (normally left) cerebral hemisphere, respectively [15]. The second process 
includes the prefrontal region and the associative secondary and tertiary cortical structures [16]. The 
significant role in this process can belong to brainwaves - through distribution of information across the 
whole cortex [2], and in transitional states of consciousness (with anticipating creative insights), and altered 
states of consciousness (with intense associative mixing of normally conscious and unconscious contents 
related to this problem, which can contribute to acceleration of the problem solving) [13,14]! 

A modeling of verbal modulation of information is an important but extremely complex task, still 
waiting to be fully accomplished in future hierarchical neural networks. However, it seems that basic brain 
mechanisms responsible for organization of natural language are known [17]: (a) Semantic processing 
(which relates indicant and symbol to the sensory input from which they derive) is carried out by systems 
which involve the posterior "association" areas that surround the primary sensory areas; (b) Pragmatic 
processing (which relates sign and symbol to their user) is carried out by ERTAS-like systems which involve 
the frontolimbic cortical formations of the brain; (c) Syntactic processing (the arrangement of indicants and 
symbols) is carried out by the motor systems of the brain to which both posterior and frontal cortical 
formations project. 

It should be then pointed out that ERTAS-like mechanism of pragmatic processing, in combination 
with the increase of dominant EEG frequency from δ to γ brainwaves [18] during an ontogenesis, implies 
that the mother tongue is generally memorized at low-frequency δ and θ levels (later being unconscious in 
adults), in contrast to second and even further languages in bilinguals and multilinguals which are 
memorized at high-frequency α, β, and γ levels (later being conscious in adults) - which then implies that 
second and further languages are being hardly incorporating at unconscious (automatic) levels, save only 
from contextual learning which enables unconscious processing of contexts [14]!  

This might provide differences of the language learning in childhood and adulthood, as well as in 
school (conscious/grammatic, noncontextual), and in living environment (unconscious/nongrammatic, 
contextual) [14]! 
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