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Patterns of activities of neurons serve as attractors, since they are those neuronal configurations which
correspond to minimal ’free energy’ of the whole system. Namely, they realize maximal possible agreement
among constitutive neurons and are most-strongly correlated with some environmental pattern. Neuronal
patterns-qua-attractors have both a material and a virtual aspect. As neuronal patterns, on the one hand,
patterns-qua-attractors are explicit carriers of informational contents. As attractors, on the other hand,
patterns-qua-attractors are implicit mental representations which acquire a meaning in contextual relations
to other possible patterns.

Recognition of an external pattern is explained as a (re)construction of the pattern which is the most
relevant and similar to a given environmental pattern. The identity of the processes of pattern construction,
re-construction and Hebbian short-term storage is realized in a net.

Perceptual processes are here modeled using Kohonen’s topology-preserving feature mapping onto cortex
where further associative processing is continued. To model stratification of associative processing because
of influence from higher brain areas, Haken’s multi-level synergetic network is found to be appropriate.
The hierarchy of brain processes is of "software”-type, i.e. virtual, as well as it is of ”"hardware”-type, i.e.
physiological. It is shown that synergetic and attractor dynamics can characterize not only neural networks,
but also underlying quantum networks. Neural nets are alone not sufficient for consciousness, but interaction
with the quantum level might provide effects necessary for consciousness, like, for instance, ultimate binding
of perceptual features into an unified experience.

It is mathematically demonstrated that associative neural networks realize information processing analogous
to the quantum dynamics. Parallels in the formalism of neural models and quantum theory are listed.
Basic elements of the quantum versus neural system (modeled by formal neurons and connections) are very
different, but their collective processes obey similar laws. Specifically, it is shown that neuron’s weighted
spatio-temporal integration of signals corresponds to the Feynman’s version of the Schrodinger equation.
In the first case weights are synaptic strengths determined by the Hebb or delta correlation rule; in the
second case weights are Green functions or density matrices. In both cases encodings of pattern-correlations
represent memory. (Re)construction of a neuronal pattern-qua-attractor is analogous to the ”wave-function
collapse”. Transformations of memory (or sub-conscious) representations to a conscious representation is
modeled in the same way.

Found mathematical analogies allow translation of the neural-net ”algorithm”, which in author’s simulations
works very well, into a quantum one. This indicates how such quantum networks, which might be exploited
by the sub-cellular levels of brain, could process information efficiently and also make it conscious.
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Overall introduction and Two present the topic in a new style, but the
third part is a purely original contribution which
indicates quantum neural-net-like information pro-

This paper is a review of models of multi-level brain . ) : '
cessing and their potential relevance for conscious

processing with connectionist approach. Parts One
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perception. The aim is that all parts together
should present an integrated overview of modeling
brain synergetics — at least from a particular (au-
thor’s) viewpoint, although not exclusively.

In the first part a comprehensive introduction to
models of associative neural networks is presented
as well as their role in large-scale modeling of micro-
cognition. Patterns of neuronal activity are inter-
preted as attractors of the parallel-distributed dy-
namics of an underlying complex dynamical system.

It will be shown how the system of synaptic
connections represents memory. The transmission
rates of individual synapses represent correlations
between neurons, whereby each neuron may coop-
erate in global encoding of many patterns as pre-
scribed by the Hebb learning rule. Learning is a
process of adjusting synaptic strengths in order to
store essential information.

In the second part processes of categorization,
adaptation, data compression and abstraction, fil-
tering of relevant information and extraction of
novel information from stimuli, and perceptual pre-
processing of patterns will be presented (now more
in detail) using the Kohonen model of topologically-
correct feature mapping and its extensions. This
model is important for modeling perception and mo-
tor action. Instead of free-energy minimization of
the previously-presented Hopfield model, in Koho-
nen’s model these tasks are resolved by error mini-
mization, lateral inhibition, and winning of one neu-
ron. This is the cardinal neuron which individu-
ally encodes a whole stimulus-pattern in the recep-
tive field. Topology-preserving mapping means that
similar input data are projected into adjacent car-
dinal neurons. This self-organizing processes is re-
sponsible for the formation of brain maps with lo-
calized encoding of perceptual data. There, even
more, correlated patterns are stored next to each
other. Methods of vector quantization and princi-
pal component analysis will also be presented.

In the third part various levels of synergetic com-
putation in the cortex and their relations will be
presented. Emergence of a hierarchy of neuronal
patterns acting as attractors, and occurrence of
thought processes as dynamic pattern sequences or
episodes will be discussed. In Haken’s synergetic

model, order parameters, which can be embodied
by cardinal cells or cardinal domains, act as sym-
bolic codes or representatives of patterns.

Quantum processing will be argued to be neces-
sary for consciousness which remained absent from
ordinary neural-net processing. Reasons for this
will be listed. Then, neural-net mathematics and
quantum mathematics will be systematically com-
pared. The resulting neuro-quantum mathematical
parallelism, which shows an analogy or resemblance,
not any rigorous and isomorphic equivalence, in-
dicates that the network metaphor can be used for
quantum as well as neural parallel-distributed pro-
cessing, in spite of differences of the nature of neural
and quantum ”units”.

If we use these neuro-quantum analogies, effec-
tive information processing, similar to neural-net
processing, can be searched for in quantum, sub-
cellular and other synergetic systems, because the
principles of collective information processing are
already known from our (including author’s) com-
puter simulations of neural nets.

1 Introduction to global brain
processing: Associative or at-
tractor neural networks

1.1 Introduction to neural networks

The term neural networks has several meanings. For
neurobiologists it denotes webs of neural cells (neu-
rons) in the brain [20, 83]. Neurons are connected
through synapses which are essential for encoding
of the memory-traces. Information is processed by
collective dynamics of neurons and synapses.
Interdisciplinary oriented scientists started to
model nets of neurons and synapses mathematically
in the fourties [6]. Since then, the term neural net-
works is usually a short name for neural network
models. Another term for neural network mod-
els, which were realized by computer simulations or
were implemented in hardware, is artificial neural
networks. The spectrum of neural network models
spreads from biologically-plausible models of real
neural processing in living systems on one side to
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technical imitations applied for information process-
ing on the other side. The second branch includes
all simple artificial brain-like mechanisms or algo-
rithms which establish a sort of model of external
data-structures [12, 43, 99]. This is called empirical
(external) modeling of physical, chemical, techno-
logical, economical and other processes.

Here we will be concerned with the first branch
of neural network models — the theoretical (inter-
nal) models of neural network architectures [27, 89].
This kind of analysis has two sub-branches: model-
ing, as faithful as possible, of real neural webs, and
mathematically-oriented research of neural network
models. Of course, it is often not possible to make a
sharp distinction between these branches and sub-
branches of modeling. The mathematical analysis
is more or less developed from neurophysiological
data. In some cases these data are insufficient, but
in other cases models are insufficient, because they
only very roughly obey biological data.

Mathematical approaches to neural network
models used for theoretical or internal modeling
(”physics of neural networks”) can be classified as
follows:

1. Haken’s synergetic computers [40];

2. statistical mechanics of neural networks which
was developed from the Hopfield model and spin
glass theory [45, 102, 3];

3. self-organizing feature maps by Kohonen and
others [56, 54].

In this introductory part we examine neural net-
work models, henceforth referred to simply as 'neu-
ral networks’, which are the most promising and il-
lustrative ones for micro-cognitive modeling [67, 79].
In modeling we usually neglect whole internal struc-
ture of an individual neuron and an individual
synapse. We assume that all information processing
is a result of collective dynamics of the whole system
of neurons and synapses. Each neuron is receiving
signals from numerous other neurons. This is mod-
eled by a simple addition of such synapse-weighted
contributions reflected in an increase of neuron’s ac-
tivity.

Due to their architecture neural network models
could be divided into following groups:

1. Fully and bidirectionally connected associative
or attractor neural networks recognize and store pat-
terns without reducing information content. Pat-
terns are stored completely, e.g. as pixel images,
representing attractors of the system dynamics.
Neurons are symmetrically or homogeneously dis-
tributed (figure 3 left).

2. Uni-directionally oriented networks with "hidden
units” (cardinal neurons or order-parameter-cells)
which are located in the middle layer. This is the
second layer of hierarchically ordered population of
competitive neurons (figure 6). Such networks are
usually feed-forward nets (multi-layer perceptrons)
[18, 58] which sometimes have feed-back loops exe-
cuting the so-called back-propagation of errors.

Neural networks are currently the most successful
model in cognitive neuroscience [79, 67]. Associative
neural network models [12, 54, 56, 40, 72, 27, 36, 89]
are a suitable mathematical description and simu-
lation of the processing in associative areas of the
cortex [20, 83].

The large-scale dynamics of an associative neural
net can be represented in the configuration-energy
space (figure 1). Each point on the horizontal axis
represents a unique configuration, denoted by vector
¢. Points on the vertical axis represent the potential
or free-energy function F of each such configuration
q [45]. The vector ¢ = (q1, 42, ..., qn) specifies the
state of the entire neural net, i.e., the entire neu-
ronal configuration. Each component ¢; describes
exactly the state of each constituent neuron of this
configuration.

As can be seen in figure 1, the current neuronal
configurations, represented by a black ball, travels
in the configuration-energy space of possible config-
urations in order to find a stable state. Where the
ball is stabilized, configuration represents a pattern.

1.2 Basic neurophysiological facts and
their modeling

The body of a neuron, the soma, acts as an 'adder’
in that it receives signals from all other neurons and
adds them together [46]. Before being added, a sig-
nal must be multiplied in the soma by the strength
of the synaptic connection reflecting both its trans-
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FIG. 1. Configuration-energy space (Note labels: 1 —
basin of attraction; 2 — momentary state of the system:;
3 — unstable configuration; 4 — pattern, i.e., stable con-
figuration)

missivity and its sign (—/+), which can be either in-
hibitory (—), or excitatory (+), or even non-existent
(0). Thus, the nature of a synaptic connection, i.e.,
its conductivity and ’sign’, encodes all relevant in-
formation about the influence of a given sending
neuron on a given receiving neuron in this model.

Let the variable ¢; denote the state of the i*" neu-
ron and J;; denote a synaptic connections ¢ — j,
where i and j vary over the set (1,2,..., N) with N
being the total number of neurons in the net. The
state of the i-th receiving neuron is then expressed
as

N
g = Sgn(>_ Jijq;) (1)

Jj=1

where g; corresponds to the emitting neuron. This
equation is valid for each neuron individually.
Function Sgn means that the result g; is, in our
case, equal to +1 (the neuron is active, or firing) if
above sum is greater than a certain threshold, or is
equal to —1 (the neuron is quiescent, or inactive) if
the above sum is smaller than the neuron’s thresh-
old. The threshold is a certain limit value which
has to be exceeded in order to fire the neuron. So,
the function Sgn gives the efferent neuron the sign
of the sum of all afferent signals of other neurons.

Letting P be the integer representing the number
of patterns stored in the neural net, then each ele-
ment of the connection matrix J varies over the set
of integers (—P,—P +1,...,P — 1, P).

Neurons send each other electro-chemical signals
[61] according to the principle of ’all for one, and one
for all’. One neuron can either promote (through ex-
citatory synaptic connection) or curtail (through in-
hibitory synaptic connection) the momentary state
of another. Specifically, if the sum of signal con-
tributions that a neuron receives from (all) others
exceeds a certain threshold of the neuron, then the
neuron becomes activated or firing, and it will emit
signals.

Individual signals, so-called ’spikes’, are arranged
in sequences, which are like combs. The frequency
of such ’spikes’ and the length, or duration, of a
‘spike-train’ bears quantitatively interpretable in-
formational value. The average frequency is 50
emitted spikes per second. The signal’s power is en-
coded in its frequency modulation. Thus, the more
"dense’ is the 'comb’ (i.e., the greater the spike fre-
quency), the more ’influential’ the signal [40]. The
length of a sequence or ’train’ of impulses is con-
strained by the time-duration of the given state of
the sending neuron at the time of emission: the
longer the sending neuron is active, the longer the
"comb,” and so much the greater will be the influ-
ence of that sending neuron on other receiving neu-
rons. The informational content of the frequency of
a ’comb’ of signals lies in continual re-enforcement
of the current state of the sending neuron. Firstly,
the neuron sends one signal, and continues to do so
if it has remained active in subsequent moments of
time. In the absence of sufficient frequency of in-
coming impulses, the neuron becomes inactive and
thereby stops sending its signals.

1.3 The system tends spontaneously to-
ward the configuration of minimal
energy

Henceforth, we will consider systems of neurons
in terms of the Hopfield model [45, 1, 3] which
prescribes that all neurons are interconnected bi-
directionally and obey the principle ’one for all, and
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all for one’. In natural neural nets each neuron is not
necessarily interconnected directly with all others.
However, the network behaves as though all its neu-
rons were interconnected in this way (mathematico-
physical analysis in: [70](pp.45-48) and [72]). A
large number of neurons is densely interconnected
with a large number of other neurons. In the ab-
sence of direct connections, connections are estab-
lished via a mediator. In either case, the essential
property of such systems of neurons is that neu-
rons being closely inter-related via a system of con-
nections one to all others. Therefore various forms
of collective organization of neuronal states occur
which give rise in turn to the formation of ’at-
tractors’ or 'potential wells’ in configuration-energy
space. Configurations with potential wells or at-
tractors are called ’'patterns’. It is exactly such
patterns-qua-attractors which are major factors in
determining the course of mental processes, not the
neurons and synapses alone. Therefore even large-
scale lesions don’t destroy functioning essentially if
attractor structures are preserved.

Let us consider the case of a network of receiving
neurons (sensors or receptors) in an eye. The net re-
ceives a stimulus from a certain environment. Neu-
rons thus stimulated begin to organize themselves.
The self-organizing process is then transferred to
centers of higher brain function, firstly to the cen-
ters for visual perception in the cerebral cortex.
Newly-formed patterns in the cerebral cortex inter-
act associatively with other patterns... The process
of neuronal organization consists, in part, in switch
of neuronal states on a massive scale. Synaptic con-
nections are being strengthened simultaneously.

The process of changing of synaptic strengths
in response to various stimuli is called learn-
ing. During such processes neuronal configurations
and synaptic connections, which represent memory-
components, undergo change. Such processes occur
always in such a way that the energy of the entire
system decreases. The bottom of a potential well
in such a configuration represents a pattern and at-
tracts, in turn, all other configurations. Therefore,
a point at the bottom of a potential well is called an
attractor: all configurations within the boundaries
of a potential well in configuration space converge to

that bottom pattern configuration [3]. This implies
that neurons fire or are quiescent in such a way as
to form patterns. Once the system ’falls into’ such
a configuration, all further configuration-changing
processes cease until the reception of a new stimu-
lus.

This process is depicted in figure 1. The state
of an individual neuron is represented as a pixel of
the picture. The transformations from a configura-
tion which resembles nothing recognizable to that
of a pattern (’spiral’) is readily apparent. Paral-
lel to configurations the corresponding changes to
configuration-energy space are drawn. Retrieval of
another pattern ('E’) from memory corresponds to
converging to another attractor. It is critical to
know that the energy surface changes in the pro-
cess! While recognizing the first pattern, the first
potential well is especially deepened; while recalling
the second pattern, the second attractor becomes
dominant and larger. Thus, it is obvious that a
neural network is a very dynamic system in which
continual change of configuration-energy space, i.e.,
changing the configurations of the system, enables
flexible formation and storage of patterns.

1.4 Recognition and memorizing of pat-
terns

Figure 2 illustrates once again the process of
pattern-formation and/or pattern-reconstruction
(recognition). We may conceive of configuration-
energy space (figure 1) as a ’soft’, deformable sur-
face of a mattress with shallow pits and the momen-
tary configuration of the network as a heavy ball
resting conformally on this surface. The ball deep-
ens the potential well centered around that portion
of configuration-energy space where the ball is lo-
cated at the given moment. External stimuli are
“putting” the ball, which represents the system, in
a certain configuration, i.e., they locate the initial
point in configuration-energy space. These stimuli
force the receptor neurons into a configuration of
stimuli (which is none other than the distributed
representation of the external stimuli themselves)
which propagate, in turn, to regions of higher men-
tal function in the cerebral cortex.
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Under the influence of stimuli from the environ-
ment a new pattern can be formed (constructed) by
the appearance of a new potential well, if it was not
there before, of an object that we had never seen
before. If, on the other hand, the pattern had al-
ready been formed and stored, then the pattern is
associatively regenerated. The stimulation follow-
ing the recurrence of a perceptual event of seeing
an object is very similar to the stimulation induced
upon the event of the first sighting of this object.
If the object is one and the same, it thus stimu-
lates the neurons in the same manner and under
circumstances identical to those of the first sighting
of the object. The pattern of neuronal activity will
be reconstructed as it had been at that time in that
previous state of the system.

So, in perceiving an object for the second, tenth,
or hundredth time, the same potential well, the
same attractor, the same pattern will be recon-
structed. It is in this manner that we perceive iden-
tity. In the same time that we perceive or recognize
a pattern, we also remember it. This implies that
the pattern is transferred from short-term storage
in the system of neurons to long-term storage in
the system of synaptic connections. Thus, the pro-
cesses of construction, re-construction, and short-
term storage of a pattern are identical [40, 39]!

A neural network transforms a specific ex-
ternal stimulus into a specific internal pattern.
This isomorphic mapping means that an exactly-
determined external stimulus always brings about
the formation of an exactly-determined potential
well and that the neural system stabilizes at
the bottom of this particular well. Furthermore,
several configurations may converge to (settle into)
the bottom of the same potential well if they are
sufficiently-similar. For several configurations to
be ’sufficiently-similar’ means that they are in the
neighborhood of convergence of the same attractor.
Thus, an attractor acts as a sort of 'funnel’ into
which similar configurations 'flow together’. So,
the system finds the closest attractor in configu-
ration space. An example of ’confluence’ into the
same attractor is given in figure 2 (see also figure 1).

In this manner a neural network realizes classi-

E

!

N

]

—k=1 k=2

FIG. 2. Similar configurations converge into the same
potential well corresponding to a pattern ¢ while recog-
nizing or/and memorizing it. (Note label: 1 — basin of
attraction)

fication. This enables recognition of an object in
slightly different circumstances from those in which
one is used to seeing the object in the past. So,
we can determine that a purse, which has been
rotated through a certain angle or displaced from
its usual position, is still the same purse. Repeti-
tion of a certain pattern deepens its potential well.
Through frequent repetition, the purse configura-
tion becomes stronger and more stable. However,
perception of an external pattern under new circum-
stances is accompanied by changes in corresponding
internal configurations. A virtual internal pattern is
always formed according to an optimal compromise
and some ’'melting together’ of all possible varia-
tions, both of the object and of circumstances, in
which the object can occur. Thus, an old pattern of
an object (experience or expectation) combines asso-
ciatively and reaches optimal agreement or consis-
tency, respectively, with the new information con-
cerning the new state of this object as acquired
through sensory organs. A pattern is synthesized
from the outside-world-information, from memory,
and from contextual information from other cen-
ters. Then such a revised and corrected pattern
is stored again. So, indeed, recognition of a pat-
tern is also identical with its formation, reconstruc-
tion, and short-term storage in a system of neurons.
Long-term storage is achieved through a system of
synaptic connections. Short-term storage depends
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mostly on bio-electrical processes involving neurons,
whereas long-term storage depends on bio-chemical
changes in synapses.

1.5 Hebbian learning based on search of
correlations

A neural network can store many patterns simulta-
neously. Accordingly, each neuron and each synapse
can play multiple roles, since each neuron (or each
synapse) participates in several patterns. There can
be several potential wells in configuration-potential
space, to which the dynamics of the system con-
verges. However, only one pattern ¢ is realized in
the system of neurons ¢ at a moment. During the
pattern-recall the following equality holds: vf = q;.

The strength of synaptic connections are deter-
mined by Hebb’s ’learning rule’ which is a fact of
neurophysiology [6]: If two neurons are both active
or both inactive, then the synaptic connection be-
tween them is strengthened. Otherwise, if one is
active and the other is inactive, then their mutual
synaptic connection is weakened. Therefore, if two
neurons corroborate each other, their connection is
strengthened. If, however, they contradict or coun-
teract each other, then their connection is weak-
ened.

Let Uf denote a variable ranging over patterns,
where k refers to the k" pattern and i to the it"
neuron. So, v¥ represents the role which the 4
neuron plays in forming the k** pattern. Now, let
us formulate Hebb’s rule mathematically:

If both the i*"* and j'* neurons are either both
active in forming the k™ pattern (vf = o} = 1)
or both are inactive in forming the k* pattern
(vF = v;-“ = —1), then their mutual connection i — j
becomes stronger: J;; is increased. Otherwise, if
their activity-rate differs (v¥ = —1 and 1);-C =1)

or (vF =

; 1 and vf = —1) then their mutual con-
nection becomes weaker. As can be shown, Hebb’s
auto-correlation equation, or Hebb’s learning rule,

consolidates all these facts:
P
Jij = Z vl vf. (2)
k=1

It describes how synaptic connections encode corre-

lations between neuronal activities of a single pat-
tern.

Each individual product in equation (2) repre-
sents coupling. If an individual product is negative
(positive), then connection is weakened (strength-
ened). The connection strength J;; is determined by
the sum of such coupling of all patterns which are
stored simultaneously in the same system. There
are P of stored patterns. Furthermore, if the states
of two connected neurons v¥ and vf collaborating
in the formation of the k' neuron are of the same
sign, then they will contribute to the stability of the
k" pattern in the neural network. If their signs are
different, then they will weaken the pattern.

Patterns stored in synaptic connections are
loaded one atop another. Connections are deter-
mined locally according to mutual (dis)agreement of
pairs of neurons. Globally, in turn, connections de-
termine the (in)stability of all configurations. Thus,
neurons locally compete amongst themselves, each
seeking to prevail and convert the rest to its state.
A neuron succeeds in this if it is in best agreement
with the other neurons and if it has the most sup-
port from the rest of the system. Then the neuron
has excitatory connections.

Globally, neurons mediate competition and cou-
pling among entire patterns. That’s similar to the
case of two individual sportsmen (“neurons”) which
mediate in an international sporting event compe-
tition of their respective states (“patterns of neu-
rons”) which they are representing at the event,
thus bringing about a 'meeting of two states’.

In figure 3, on the left, a 'natural’ representation
of Hopfield’s network is depicted and, on the right,
a diagram of the functional scheme of the structure
of the memory or correlation matrix J according to
Hebb’s equation (2). Individual elements J;; repre-
sent the coupling of the it neuron v¥ and the j*
neuron vé-“ , forming parts of a given k* pattern.

1.6 Content-addressable memory in net-
works

In a neural network information is stored in a
parallel-distributed (non-local) manner in the val-
ues of connections: patterns are distributed across
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FIG. 3. Diagram of a neural network according to Hop-
field’s model (left) and diagram of a memory matrix J
(right).

the entire system of connections. Memorization
is content-addressable where mutual connection be-
tween neurons are essential for associative recall.
It differs overall from the memory storage found
in von Neumann computers which don’t have di-
rectly interconnected and directly interacting mem-
ory components, and where contents are addressed
with special codes. Information content is repre-
sented in the state of the network itself. Accord-
ingly, to recall content requires bringing the system
in a certain state. Stored patterns co-determine
each other. That’s similar to the case of a cross-
word puzzle (“network”) where words (“patterns”)
determine each other, because they have common
letters (“neurons”). These inter-relations enable as-
sociative recall.

Neural networks operate iteratively. The efferent
signal of one neuron is the afferent signal of an-
other neuron. Cycles of input—output—new input
are densely-interwoven throughout the entire net-
work. So, new-coming patterns get associatively
connected with the old memory-patterns and thus
condensely and optimally stored without repetition
of common information (like in a cross-word puzzle
where common letters are shared among words).

Memory traces of patterns remain in the connec-
tion system even after the system of neurons passes
over to the next pattern. There can be only one
pattern at one time in the neurons (’in conscious-
ness’, or more exactly in the manifest conscious-
ness), whereas in the connections (in memory, or in
latent consciousness, or in the subconscious) there
can be several patterns simultaneously, albeit it is
necessary to recall them from memory. Through

recall a memory is brought from the connection sys-
tem into the system of neurons. The prompt for
this is typically a similar external stimulus which
draws neurons into a ’replication’ of the externally-
imposed pattern. Such a prompt can come also from
some other cerebral sub-networks (and thus inter-
nally with respect to all the sub-networks of the
brain, yet external to the sub-network under con-
sideration).

To illustrate this let us consider the example of
the ball and the pillow from section 1.4. The ball
(neuronal configuration) can occupy only one place
on the pillow (in potential space), although there
can be several pits which it has already indented in
the pillow (patterns, 'imprints’). We are 'conscious
of” and we are ’experiencing’ momentarily only that
pattern which is in the neurons, i.e., 7% = q.

In the course of memorization information is
transferred through the process of learning from
'manifest awareness’ (in the neurons — in §) to ’la-
tent awareness’ (stored in the connections — in J).
Thus, memorization is a single-valued mapping of
some image of an external object into an internal
virtual image firstly in the network of neurons them-
selves (short-term memory, as defined by some au-
thors), whereupon this image is transferred to the
synaptic connections (long-term memory).

The pattern is forgotten if a certain potential
well is erased. This can come about through re-
ception of new stimuli, disturbances, disagreement
with other patterns, or disagreement among neu-
rons of the same configuration. Then connection
strength diminishes and patterns are weakened.
Otherwise, if patterns are frequently reinforced and
renewed, then they are strengthened. During learn-
ing this comes through repetition. Forgetting can
also come about through interference between pat-
terns or 'melting together’. However, the most fre-
quent concomitant to inability to recall a pattern is
inability to reconstruct its attractor due to an in-
sufficient 'key’, i.e., the partial contents required to
prompt the recall of the entire contents.

If a neural network has symmetric connections
(the synapse is equally permeable in both direc-
tions: J;; = in), then the system can form stable
attractors. If the connections are asymmetric, then
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patterns will not be stable and may move around in
configuration space. This means that the potential
well moves or (what is essentially the same thing)
it rolls along configuration space from one pattern
into another. One pattern disappears and another
appears. The system may describe periodic (after a
certain time period the system returns to its orig-
inal configuration), quasi-periodic, or completely-
chaotic paths. Dynamical pattern sequences are the
origin of the flow of thought.

1.7 Explicit/implicit nature of patterns/
attractors; cardinal cells; minimizing
free energy

neurons attain the

This is the config-
uration in which they are in optimal mutual
Free energy is proportional to the
degree of disequilibrium of or disagreement among

Let us examine how

energetically-optimal state.
agreement.
a population of neurons. The optimal state can
only be attained through continual transactions
through connections.

Energy ratios of configurations are carriers of
implicit structures — attractors. The free-energy-
function E of the system is lower if neurons agree
(their activities ¢; and g; have the same sign in that
particular moment) while having positive connec-
tion Jj; (good history of agreement) or disagree
while having negative connection (more disagree-
ments in previous times). Furthermore, F increases
if neurons agree while having negative synapse or
disagree while having positive synapse. In the same
time the energy is inversely-proportional to the
agreement of neurons with the neuronal field (“pub-
lic opinion”). These conditions are encoded in the
following equation [36]:

LN N LN
E= _§ZZJijQin - §Zﬂqi- (3)
i=1 j=1 i=1

T; represents the influence of the neuronal field on
the i'" neuron (the influence of “society” on the
individual, or the other way around). In another
interpretation, 7; may represent a neuron’s thresh-

old, specifically, its own threshold or its threshold
as determined by others.

The Hebb learning rule gives such a value to J
that F is automatically minimized if stored patterns
¥ enter into the system of neurons ¢, i.e., ¢ = 7.
Only in that case the whole network is, with respect
to the system of neurons as well as the system of
connections, in an optimal overall agreement, and
its free energy E is minimal.

Patterns could not appear on the basis of sim-
ple data, which (sensory) neurons receive repeatedly
and in fragments, if these patterns would not collab-
orate and adapt to one-another. On a higher level,
a pattern could not collaborate in the formation of
complex patterns, if it weren’t in a comparative re-
lation with other patterns. The pattern would be
meaningless by itself.

So, a pattern has a role only in relation to other
patterns and usual configurations. Its place in a set
of relations is evident in the energy-configuration
space. A pattern has more meaning than an or-
dinary configuration, since it is more stable. It is
more stable, because it is a more accurate represen-
tation of an actual situation - in the outside world
or on a more abstract internal level. Stated other-
wise, a pattern is more stable, since it agrees with
outside patterns and with other internal patterns.
This is expressed in the fact that the free energy
of a system of neurons is lower when that pattern
is reconstructed in the system’s configuration. It is
because of this that a network tends to this pattern.
Let us emphasize again that a map from the envi-
ronment ’impresses’ contents into patterns, whereas
their meaning emerges from their relations to one
another and to the environment. External patterns
from the environment have the same role as do inter-
nal patterns except that they have greater weight.

In figure 4 two configurations (denoted by a ball)
are shown which are in different ratios to the other
configurations (other points on the horizontal axis).
The left one is not stable and the system assumes it
only transitionally, since the relief just transformed
itself and the system hasn’t yet adapted to the
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change. In the right configuration the system equi-
librates, because it is especially important (it is a
pattern). Its importance/meaning is co-determined
by other configurations also.

)

E————M B :7—-4\/

q

S

i, 7 A

FIG. 4. The same location in the configuration-energy
space (the ball) has various meanings in various contexts.
On the left it represents a pattern, on the right an ordi-
nary configuration.

Minima of configuration-potential space repre-
sent implicit order in a neural network and this
order determines the formation of further virtual
mental structures. In figure 5, on the left, the sys-
tem is shown in the neighborhood of an attractor
and is certainly going to move towards a minimum
in configuration space, except if the surface of the
relief would suddenly change because of other influ-
ences. In this case, the pattern is already latently
present in the system of neurons. It is contained
implicitly in the state vector ¢, although it is mixed
together with traces of other patterns. Then, when
the system goes over to the bottom of the poten-
tial well (figure 5, on the right), a certain pattern
appears clearly and resolutely ’in consciousness’.
Then the pattern is manifest explicitly. This ex-
plicit manifestation is especially obvious if the cor-
responding cardinal neuron is selected and starts to
fire. Switching-on of some most dominant neuron,
which then represents the whole neuronal pattern,
often accompanies the explication of a pattern from
background. Since the moment of his winning the
competition, such a cardinal neuron encodes and
represents its pattern at the next hierachical level
[40, 73, 75].

When the system is in the basin of attraction
of an attractor corresponding to a pattern, then

E E
4
—
1 A 1 3
\2 2
| i ! lj
—k=2

FIG. 5. A pattern (e.g., 7*=2) is represented implic-
itly when the system is in its neighborhood of attrac-
tion (left: unstable initial situation). When the system
reaches the bottom 2 (right: stable final situation), the
pattern (black - white - black - white - black - white) be-
comes explicitly manifested. This may be accompanied
by the firing of a cardinal neuron ¢*=2. (Note labels:
1, 3 — local spurious attractor; 2 — global attractor; 4 —
basin of attraction)

the pattern is represented implicitly in the system
of neurons, not only in memory (in the system of
synaptic connections). When the system of neu-
rons reaches its attractor and, thereby realizing this
pattern, in the same time, the value of its cardinal
neuron attains a maximum, if it can attain various
degrees of strength or intensity. If it can only be
active or inactive, then it will be activated at that
time. With this, the cardinal neuron signifies that
there is a corresponding pattern ’in consciousness’.
In sending signals throughout the brain, the cardi-
nal neuron informs of the presence of its pattern and
represents it. Therefore a pattern (which is parallel-
distributed throughout a network at a lower level of
its hierarchical structure) is encoded implicitly in the
concrete material state of one cell.

The use of cardinal neurons is but a special way
of organizing the operation of a neural network.
This principle obtains on the wvirtual level as well,
on which the cardinal neurons are replaced by syn-
ergetic order parameters which “act” tmplicitly.

There is a continual transition of configurations
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from implicit representation in the system of synap-
tic connections (memory) to explicit enactment in
the system of neurons (‘consciousness’), or con-
versely. Implicitness means the set of all possibili-
ties, from which the environment selects that which
is actual in that moment and brings these contents
into explicit experience. The implicit context de-
termines the form of the potential well. So, this
implicit background influences those configuration
which momentary represents the 'center of mass’ of
an attractor with this particular potential well.

The set of all possibilities does not mean liter-
ally that we have in the brain, ready in advance, all
possible images and situations, in all their details.
In memory we have only an abstract model, drawn
from the most basic features of past experience. In
this model each thing is represented only once. Sim-
ilar things or repeated occurrences of things are en-
coded automatically with the ’ideal’ group of prop-
erties of those things (common features), along with
additional information about specific features of an
actual individual thing.

In this section we have established the inter-
relation and ’transition’ among non-local (parallel-
distributed) patterns and local cardinal cells (if the
latter exist). If someone asserts the discovery of cells
which carry certain information, then this concerns
cardinal neurons. However, they cannot process this
information alone, rather only through dynamic col-
laboration with their basis patterns. Only these base
patterns enable some cardinal cells to exceed their
activation threshold.

Obviously, a "hunger neuron’, ’awareness neuron’,
'pleasure neuron’, etc., (in so far as we may claim
that they exist at all) are not hunger, awareness, or
pleasure per se, but rather they encode the wider
complex of patterns (distributed across the brain)
and its influences — just as a signal lamp signifies
that a machine is in operation. Cardinal neurons
are more clearly-defined at lower levels (integra-
tive neurons), whereas at higher levels, cardinal do-
mains and virtual order parameters perform encod-
ing functions [39, 38].

2 Perception: Self-organized
topology-preserving mapping
by Kohonen neural networks

2.1 Introduction to perceptual maps
with cardinal neurons

The model of self-organizing networks which adapt
to perceptual data by evolving brain-maps with
preserved input-data relations was established by
Teuvo Kohonen in early eighties [53, 55]. It is a
relatively biologically-plausible model. It is mostly
used for modeling perception (using sensor maps)
and motor action (using motor maps) in living or-
ganisms, especially in the brain [72, 82, 27], but it is
applied also for pattern-classification tasks in com-
puter science and robotics.

Feed-forward neural networks can perform map-
pings from sensory inputs (lower layer) to internal
representations (middle layer), and further-on from
internal representations to motor outputs (upper
layer). From now on we will consider only the sen-
sory part of this processing. Decoding of internal
representations for triggering motor actions (real-
ized in the upper half of the network in figure 6
right) is anyway following principles quite similar
to coding of sensory data & into internal represen-
tations o (realized in the lower part of the network
in figure 6 right).

In these networks encoding is constructed by re-
ducing the difference (error) between the external
state and the metwork’s internal representation of
it. Both, internal and external states, are presented
as activity patterns (figure 6 left) and are math-
The individual
components of each pattern-vector corresponds to
an individual element of the pattern. The synap-
tic connections, where patterns are stored, change
according to the rate of this disagreement between
the prototype (internal representation) @ and ordi-
nary pattern (pattern of environmental stimuli de-

ematically described by vectors.

tected by sensory cells) . Prototype can be pre-
scribed by a ”teacher” (supervised learning) or can
be established by a self-organizing procedure (un-
supervised learning). In the second case, which is
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FIG. 6. Right: Feed-forward network (without feed-
back) with input (sensory) layer, hidden (representation)
layer and output (motor) layer. Left: Two examples of
a pattern of cell activities as can be formed in the sym-
metric net as well as in the feed-forward net. Bottom
left: input pattern of sensory-cell activities. Upper left:
target pattern of synaptic strengths.

biologically more relevant, the prototype is consti-
tuted by the winning meuron. This is the neuron
which wins the competition between neurons and in-
dividually takes the task of coding a specific pattern.
The winning neuron is also called cardinal neuron,
or order-parameter-cell (because it orders the whole
layer of neurons after it has "taken all the power”).
To be more specific, as long as the cardinal neu-
ron competes with other cardinal neurons we will
refer to it as potentially-cardinal neuron. In that
stage also its competitors are potentially-cardinal
neurons. Only one of these potentially-cardinal neu-
rons can win the competition and become the most
activated one. In that case it is called actually-
cardinal neuron. Such a winning neuron located at 7
represents its corresponding prototype-pattern ws.
All new-incoming patterns Z are compared to this
"ideal” (called also target-pattern i ) and are classi-
fied according to this most similar prototype w. Of
course, a neuron can win the competition only if it
has support of the actual state in the environment.

Kohonen network is a combination of fully in-
terconnected network, if we look the target layer
only, and a feed-forward network if we look verti-
cally through the hierarchy of layers (figure 7: more
layers could also be added) [72].

Within the target-layer (output-layer) connec-

7 } cs
Wy, }
Wi
X|
1=1 1=2 =3

FIG. 7. Kohonen network with the first (input) layer
of sensory neurons and the second (target, output) layer
of cardinal neurons which constitute maps. Potentially-
cardinal neurons inhibit each other.

tions are non-plastic and inhibitory, whereas inter-
layer connections are plastic. In Kohonen model it
is usually taken that neurons have activity-values
between 1 (excited) and 0 (quiescent), and that
synapses have positive and negative real values in-
cluding 0.

Such a neural network develops receptive fields
[82]. Receptive field is a population of sensory cells
which are connected to a specific cardinal neuron.
This cardinal neuron is specialized to be most sen-
sitive to a specific input-pattern only. A cardinal
neuron with its corresponding receptive field clas-
sifies and stores a specific input-pattern. Keep in
mind that a receptive field is a domain of sensory
cells, whereas a map is a domain of neurons.

Each receptive field acts as an adaptive filter: it
selects those pattern which is the most similar to the
right target-pattern. Each target-pattern is repre-
sented by a potentially-cardinal neuron. The cardi-
nal neuron whose target-pattern « is the closest to
the actual input-pattern £ becomes the most acti-
vated one.

2.2 Topologically-correct feature maps

Neurophysiologists have discovered specific brain re-
gions which process or encode specific kinds of in-
formation [68]. The Kohonen model is the most
important and biologically-plausible one which can
present the process of localized encoding of percep-
tual data (figure 8) [94, 72, 82, 53].

For this localized encoding, topologically-correct
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FIG. 8. The network reacts to an input-pattern (in this
case represented in sensory cells of the finger’s recep-
tive field) by a local activation around a cardinal neuron
which is the carrier of encoding of that input-pattern in
the brain map.

mapping is essential. In this case, mapping means
a transformation of an input-pattern ¥ to a corre-
sponding internal representation or memory w of
that input.
that adjacent points of an input-pattern are con-

Topology-preserving mapping means

nected to adjacent neurons in the target-layer. So,
topological relations are conserved while the input-
pattern & is projected to the target-pattern (output-
pattern) .

Self-organization means that the mapping is a
result of interactions between neurons and “spon-
taneous search of collective agreement” [54]. The
trigger of this process is a stimulus from environ-
ment. This perturbation is enough for forcing the
system into search for a new equilibrium. Stability
is found by forming a state where the actual input-
pattern 7 and the target-pattern w are as close as
possible, i.e. ||@ — Z|| is minimal. Actually, input-
pattern & selects those target-pattern «w which is the
most similar to it. This is done by selective activa-
tion of those sensory cells x; which “by chance” have
at that moment such an activity which matches the
stimulus.

Self-organizing mapping is an optimization pro-

cess where the similarity of input signals is pro-
jected to proximity of excited neurons. So, simi-
lar input patterns will be encoded into topologically
close neurons. To be ”topologically close” means in
this case that neurons which are physically located
close to each other will react similarly to similar in-
puts, but neurons located far apart of each other
will react differently to similar inputs.

In neural networks dynamics is in general gov-
erned by minimizing a co-called cost function which
is analogous to energy-minimization in physics: the
cost-function has to be minimized if the system has
to reach equilibrium. In Kohonen model the cost
function is proportional to the square of difference
between the input-pattern ¥ and the target-pattern
w. The Kohonen cost function is analogous to the
elasticity energy which is proportional to the dis-
location from the equilibrium point (here @). The

> if neurons with sim-

network can “spare energy’
ilar tasks communicate over very short connection
paths. Therefore the mapping where similarity rela-
tionships among the input-patterns are transformed
into spatial relationships among the responding neu-
rons is an “energy”-optimization process [82].

At the same time, the self-organized topology-
conserving mapping means dimensionality reduc-
tion of the representation space. A high-dimensional
space of input-patterns is reduced usually to two-
dimensional maps which maintain neighborhood re-
lationships. Input-pattern has a dimension equal to
the number n of constituting elements — excited sen-
sory cells [. Cardinal neurons are determined by =
and y coordinates belonging to the cortical map.
This mapping means also data compression. Net-
work learns to discern the most important features
of input-patterns. Only these main characteristics
of the input-information are stored.

The self-organized map is a result of continuous
and non-linear approximative mapping which is de-
fined implicitly by a self-organized process of search-
ing stability through maximal possible agreement of
neurons. This process is called learning. It is driven
by learning examples from the network’s evolution-
ary history.
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The two-dimensional maps are mostly located in
the primary layer of the neocortex. Examples are
somatotopic map (in somatosensory cortex) of the
skin surface, retinotopic map (in visual cortex) of
the eye’s retina, tonotopic map (in auditory cor-
tex) of the ear’s cochlea-spiral, etc. In the auditory-
cortex-map pitch (frequency) is encoded in one di-
rection, amplitude in the orthogonal direction. In
superior colliculus in midbrain direction and ampli-
tude of rapid eye movements (saccades) are spatially
encoded [82]. Triggering mechanism for flexion and
extension movements of muscles are encoded in the
motor cortex (ring map).

In the neocortex there are, vertically cutting
its layers, the cortical columns and micro-columns.
They can also be understood as a product of self-
organized topology-conserving mapping. They are
thus specialized to analyze some particular features
of the input-patterns (orientations, velocities and
directions of movements, edges, periodicity, color
shades, etc.), or to regulate motor actions (e.g.,
innervation of a common muscle). In association
areas, columns are densely connected to execute
collectively complex tasks like recognition of faces,
speech comprehension and planning of arm trajecto-
ries. Columns provide informational basis for higher
brain functions modeled by attractor neural net-
works.

2.3 Learning process by error minimiza-
tion

Using topology-preserving mapping a large set of p
input-patterns 2%(k = 1,...,p) gets encoded into a
smaller set of p’ prototypes wz. Here 7 is used as an
index. It refers to location of those neuron to which
synapses are transmitting signals from sensory cells.
The k" input-pattern is described by a vector ZF =
(o, 25, ...
pixels of the input-pattern which are projected into

,x,’fb) Its components represent individual

activities of individual sensory cells on the retina
(vision), cochlea (audition), etc. n is the number of
sensory cells.

The prototype is represented by a vector Wy =

(W1, Wiy ey Wiy ) Its components wq actu-

ally represent synaptic connections between the
potentially-cardinal neuron at location 7 and the
sensory cells with index [.

49 neurons forming a
7x7x6 Kohonen network

3
~— levels of weights

7

49 outputs arranged in a 7x7 map

FIG. 9. Kohonen network presented by a block of synap-
tic strengths or synaptic weights. Each sensory cell z; is
connected to each neuron in the 7 x 7 output-map. 6-
dimensional input Z (here presented one only: p = 1) is
projected into 2-dimensional map of 7 x 7 neurons (as
many as there are squares on the top). Each neuron is
presented by a vertical column which corresponds to the
vector of synapses between this neuron and all sensory
cells ;(Il = 1,...,6). A “level” of synaptic-weight-values
which are given by the 3" input variable x5 is shaded.
Dark-shaded circles correspond to the 3% synapse on the
neuron (1,1), and the 3"¢ synapse on the neuron (6,5). In
this network-block 49 uncorrelated 6-dimensional input-
patterns could simultaneously be stored. If inputs are
correlated, memory compression starts... (From Zupan
[103], with permission.)

If some prototype Wz matches the input-pattern
% more than other prototypes do, then the cor-
responding potentially-cardinal neuron at location
7 wins the competition against other potentially-
cardinal neurons 7 and becomes actually-cardinal
neuron — the winner. In this case we say that the
network has recognized the input pattern Z* so that
it classified this input as an example of the pro-
totype wpr.
the prototype changes somewhat: the new updated
prototype is a result of a compromise between the

old prototype and new input. The prototype is en-

By meeting every new input-pattern

coded in the synaptic connections w and/or in the
cardinal neuron at location 7. We cannot localize
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the encoding since the synaptic strengths wz and
the resulting activity of the cardinal neuron 7 both
contribute to the mapping as a dynamic process.
Statics does not mean anything to the network;
only dynamics has meaning in the sense of realiz-
ing specific input-output transformations. There-
fore mathematical description which is static is not
enough for understanding neural network process-
ing. One needs a lot of intuitive, flexible “mental
modeling” also.

All equations written from now on will be valid
for all sequentially occurring adaptation steps fol-
lowing each arrival of an input-pattern &, therefore
the index k£ will always be omitted. The activity of
some potentially-cardinal neuron in the second layer
(target-layer or map) is given by [82]

cr=fO_wrz + Y Jyep — Tr). (4)
P 7

f is the non-linear (tangens-hyperbolicus-like) ac-
tivity function of the neuron 7 called sigmoid func-
tion. T is the threshold of the neuron 7. n is the
number of sensory cells x; in the first layer which are
connected with each potentially-cardinal neuron 7
in the second layer (map). The neuron’s activity
¢ is updated by a ”sigmoid-shaped” sum of three
contributions:
1. a sum of all inter-layer synapse-weighted sig-
nals' z; from sensory cells [ ;
2. asum of all intra-layer synapse-weighted signals
¢y from other neurons 7 in the map;
3. the threshold T of the receiving neuron 7 .
wyy is the strength of an inter-layer sensor-neuron
synaptic connection. Jz= is the strength of an intra-
layer neuron-neuron synaptic connection.

Let’s assume that the neuron 7 is the win-
ner. Then usually, Jz= > 0 (excitatory synapses)

LA signal is propagation of a so-called action potential
along a neuron’s axon. It is a macroscopic effect of a com-
plex process of selective migration of K and Na ions through
the cell’s membrane. Because of this migration, a gradient of
concentration is formed along the axon. This gradient estab-
lishes a dynamic electro-chemical equilibrium: in the previ-
ous place the equilibrium is destroyed, in the next segment
of the axon it is constituted again. Macroscopically this is
manifested as a signal along the axon.

for neighboring neurons, and Jz» < 0 (inhibitory
synapses) for neurons more far away. So, around
each neuron there is first a concentric circle of pos-
itive synapses (support of similarly-oriented neu-
rons), and then a concentric circle of negative
synapses (famous lateral inhibition, found in bio-
logical perceptual systems). Those neuron who has
the most strong support of the nearest neurons (its
inside domain), and is at the same time able to in-
hibit neurons in the neighboring domains (outside
its domain), will become the winner. The concen-
tric order of synaptic strengths is illustrated by the
”Mexican-hat” function (figure 10).

Jrr!

I N i

FIG. 10. Mexican-hat function: distribution of excita-
tory and inhibitory synapses to the neurons encircling
the center-point neuron.

Lateral inhibition or competition leads to a
spatially-localized excitatory response which is the
highest at the winning neuron. For simplicity Koho-
nen often makes approximation by considering only
the response of this cardinal neuron 7 as if other
neurons 7 would not response at all (”winner takes

all” ):
n n
Zwmcz:l = m?XZ'LUFl.Il. (5)
=1

If for each neuron ||w7| (that is />, w% — total

synaptic strength per neuron) is constant, and if
|Z]l = 1 (all input-patterns & have the same ”inten-
sity”), then the approximation can be written also
as follows:

| — Z| Zm;nH?EF*fH- (6)
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In the Kohonen model it is usual to represent the
target-pattern by a vector of strengths of synap-
tic connections (W) from each sensory cell 1 (I =
1,...,m) to a given neuron 7. By this definition
input-pattern ¥ and target-pattern wz have the
same dimension (n) and can be subtracted. Now
we see what is advantage of such kind of math-
ematical description. Activities of neurons ¢y are
not important in this model. Only their relations to
configurations of sensory-cells are important. These
relations are encoded in configurations of synaptic
connections (wy) to a given neuron (7). It is enough
if a neuron is denoted by its location 7 only.

The version (5) chooses the most excited neuron
to be the winner. The version (6) chooses those
cardinal neuron which represents the target-pattern
closest to the input-pattern £. Both ways bring the
same effect.

The strengths of synaptic connections are
changed according to

Awgy = ehpp (x] — wi)

or  AWp= ehpp (T — W) (7)

where
(7?2
hi = exp <(TGT)> : (8)

o is the radius of the Gaussian excitation function
hrz. o is fixed in the first approximation, but in
the second approximation it can be slowly decreased
during learning. In equation (8) 7 marks the ex-
citation maximum gained by the actually-cardinal
neuron. The “shape” of hz= is fixed with respect
to variation of 7 (locations of the neurons in sur-
roundings). The position of Gaussian function Az
is chosen by an incoming stimulus which enables
some specific potentially-cardinal neuron to become

the actually-cardinal neuron 7.

The response of
nearby neurons 7 is given by hz=. Introduction of
this function is necessary in order to achieve local-
ized neuronal excitation as in figure 8.

The prescription (7) originates from neurophysi-
ological research [6, 54]. This so-called learning rule

says that the synapses wg should be changed more if

the difference between the individual input-stimuli
x; and target-activities wg is bigger, or that the
rates of synaptic transmission z; should be changed
less if the difference is smaller. So, larger disagree-
ment requires more adaptation. This is not all: the
spatial distance between neurons is also important.
Its role is encoded in the shape of hz» which controls
the size of the neighborhood region. With that the
number of neurons affected by a single adaptation
step (7) is determined, as well as the rate of affec-
tion. The target-patterns wz associated with the
neighboring potentially-cardinal neurons 7 are cou-
pled more strongly than target-patterns wz corre-
sponding to more distant potentially-cardinal neu-
rons 7 .

Learning is the process where the adjustments
(5) or (6), respectively, and the adjustment (7)
are following each other in an iteration-procedure
[72, 82, 12]. Equations (5), (6) and (7) are equally
valid for all adaptation steps marked by k if we
keep in mind that Z* is new in each step. In the
beginning of each (k") cycle of iteration the new
input-pattern Z¥ is presented to the network. Then
the winning neuron is chosen by (5) or (6), and
synapses are changed according to the rate of sim-
ilarity between the input-pattern and the target-
pattern. In a model it can be prescribed whether
only one learning cycle or many cycles are follow-
ing each input. Self-organizing adaptation causes
a shift of the input-vector Z* and the target-vector
Wy closer to one another. The adaptation process
is finished when Wy = Z¥. We say that in this mo-
ment the input-pattern was recognized and simulta-
neously it gets stored in the new vector of synapses
wr. In such a way we get a new target-vector which
is a new memory representation. If the network is
already filled with old memories, we at least get a
better memory representation, because it considers
also the last input-data.

The learning rate ¢ can also decrease gradually
with the number (k) of learning or adaptation steps.
Without proof we shall mention that two important
conditions are necessary for € in order to achieve
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convergent adaptation process [54]:

t

lime(t)=0 and lim [ et)dt' =oc0. (9)

t—o00 t—oo Jo

Learning time ¢ flows in parallel with increasing in-
dex k which belongs to sequentially arriving learn-
ing examples #¥. The second condition demands
that decreasing of e towards zero in time t (as
prescribed by the first condition) must not be too
fast. At the beginning of the learning process the
synapses may be empty or with random transmis-
sion rates wm. The iteration process (6)/(7) using
function (8) is actually an alternative description of
the signal-exchange determined by (4).

2.4 Vector quantization

Two mathematical approaches to description of Ko-
honen’s dynamics will be presented now. In most
images, adjacent pixels are significantly correlated.
Also if we have to store many similar input-patterns
(e.g., many faces) it is useful to store all correlated
pizels close to each other, to store all equal data only
once and to ignore all redundant data.

Self-organizing mapping helps to solve this task.
It executes data storage by nearby-coding of similar
information and at the same time it executes adap-
tive data compression. In self-organized maps data
are stored in a more compact form, preserving all
the most important information, so that the recalled
data include as little error as possible comparing to
the original information. Usually we introduce a
measure of recall-error which should be minimized
in order to achieve maximal data compression.

A suitable measure is the sum of all differences
between the input-patterns ¥ and the target- or
prototype-patterns wz. By introducing a probabil-
ity density [27] of input-patterns P(Z*) we can write
our measure as an expectation value F of the square
€rTor:

E(@) =Y ||I7" - @H|*P(&"). (10)
k=1

We want to minimize this expression in order to

compress data. This procedure is called optimal

vector quantization. The best way to find the mini-
mum of E is gradient descent, i.e. movement in the
vector-space along a line of maximal reduction of
according to change of prototypes Wz :

Wr(t + 1) = wx(t) — ;gi =
= dir(t) + ey (F" — Tt PE). (1)
k=1

This equation, obtained by inserting (10), is used
for every prototype ws .

We can simplify equation (11) if the probability
distribution P(#*) is not known explicitly what is
often the case:

U (t + 1) = W (1) 4 e(* — @), (12)

Here we have focused our attention only to the ad-
justment of the prototype Wy which matches mostly
with the current input-pattern Z¥. Input-patterns
are presented successively during learning and in
each step (12) is used.

Equation (12) is equivalent to equation (7). In
order to get this generalization we would only have
to add the neighborhood function Az . In the most
general case which includes the neighborhood func-
tion and probability distribution we can write the
error function as a functional

p
B =Y hee Y7 — 2P, (13)
rr k=1

rr

Dimension of vectors ¥ and @r is n. k is the or-
dinary number of an input-pattern which is to be
learned or classified, respectively.

It is a special characteristics of Kohonen maps
that it is, say, three times more dense map (three
times more neurons) formed where there is three
times higher input-probability-distribution P(z*).
So, we get a better map-resolution corresponding
to those receptive fields where there are more stim-
uli.

2.5 Principal component analysis

A very important way for feature extraction is the
principal component analysis of the input-data [82,
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9]. Input-patterns ¥ can be written as a series
P’ .
="+ @ e (T) + R(T). (14)
r=1
¢, = WI* are the principal components of the

input-patterns. Totally there are p’ of them. They
could also be treated as the strengths of activity of
corresponding cardinal neurons 7. Index r corre-
sponds to location of a cardinal neuron 7. At the
beginning all ¢, are approximately equal and lower
than 1.
neurons. Later environmental stimulus gives priv-

Then we talk about potentially-cardinal

ilege to one pattern and its ¢, increases towards
1 (wins). This means that one neuron becomes
actually-cardinal, other neurons get subordinated.
We are able to store all inputs #* completely (so,
there is no need for data compression) if p = p’. In
this “ideal” case index k£ and index r are equiva-
lent. If, on the other hand, there is p > p/, data-
compression causes that a higher number (p) of in-
puts Z* is represented by a lower number (p') of
cardinal neurons ¢, or/and their set of synapses W
(or W, respectively).

wW" specifies the center of weight of the input
distribution P(z*). Other p’ prototype-vectors "
form a basis of the eigenspace. These p’ vectors are
eigenvectors of the autocorrelation-matriz C that
have the largest eigenvalues [82]:

C= zpj(fk — ) @ (@ —)TP@E*).  (15)
k=1

T denotes the transpose vector; ® denotes the outer
or tensor product: (@ ® g)w = a;b;.

Equation (14) defines a hyperplane which passes
through the center of weight @ and is spanned by
principal axes along all @". R(Z*) is a residual vec-
tor which represents a non-vanishing distance from
the approximating hyperplane perpendicular to it.
If ﬁ(fk) would be zero, our approximation with
principal eigenvectors @ (prototypes) or, equiva-
lently, with principal components ¢, (cardinal neu-
rons corresponding to prototypes) would be perfect.

To summarize, w" are eigenvectors of the

correlation- or covariance-matrix C with the largest

X

X4 X

FIG. 11. Approximation of a two-dimensional input-
distribution P(z%), (k = 1,2) with the center of weight
W by a principal axe along w'. Left: linear case. Right:
non-linear case where a principal curve would fit the data
better than a principal axe.

eigenvalues \, [27]:
Z Cz-jw§ = )\rwf. (16)
J

¢, are projections of the input-patterns T*

along
the principal axes defined by the eigenvectors w".
In each learning cycle, following each input, one
potentially-cardinal neuron wins the competition,
others are suppressed. This is equivalent to increase
of one principal component c,, to 1, and decay of
other projections ¢, (r # rp) onto corresponding
eigen-patterns w" (r # rg). After the next input
another principal component may get privilege to
dominate.

Self-organized topology-preserving maps are
actually generalizations of the principal-axes-
calculations [82]. Namely, they use (instead of lin-
ear principal axes and linear eigenspaces) principal

curves or principal surfaces (figure 11).

2.6 Concluding remarks on Kohonen’s
compressed encoding

We have shown that the self-organizing mapping
compresses input information using non-linear pro-
jection of input-patterns onto a lower-dimensional
prototype-space. This is done in the most effi-
cient way by minimizing the input-target-differences
and by transforming similarity-relationships of the
input-data into spatial neighborhood-relations of
the cardinal neurons which represent prototypes.
Principal component analysis was presented as a
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special method of feature extraction and data com-
pression.

A special case of mapping is search for an one-
dimensional map. This mapping brings approxi-
mate solution to the so-called traveling salesman
problem — how to connect many points with a short-
est trajectory [82, 30]. Kohonen solution of this
classic optimization task is a Peano curve, a zig-zag
curve which homogeneously covers almost the whole
receptive field, and is sometimes fractal. DNA could
be modeled as an one-dimensional map, and its
global encoding and decoding' processes could be ap-
proximated by the Kohonen self-organization.

All discussed approaches are used for modeling
perception and motor action in living organisms.
Connection vectors and cardinal neurons are to a
very large extent not genetically prespecified [31].
They evolve (like the DNA itself also, but much
more gradually) under the selective influence from
environment.

Present model is, of course, very important
in neurophysics, but one can expect that it will
have significant impact on physics in general. It
is namely an algorithm for dimension reduction
in a complex system, and explains how from self-
organizing parallel-distributed processes localized
structures arise.

3 Higher brain functions and con-
Synergetic neural
networks and neuro-quantum
coherence

sciousness:

3.1 Synergetic conglomerates of
patterns-qua-attractors: Simul-
taneous operation at all levels

In the first part we have presented the most impor-
tant aspects of cognitive processes at a micro-level
using symmetric associative neural networks, which

!During embryonal development DNA’s genetic informa-
tion is decoded in the process of continual external and inter-
nal environmental influences.

organize themselves into functional and/or virtual
hierarchies. Processes such as pattern recognition
and storage, associations, adaptation to novel stim-
uli, extraction of the most relevant informational
content, categorization, generalization, etc., can be
modeled successfully using Hopfield neural networks
(and their generalizations) which were presented in
the first part.

In the second part Kohonen-type feed-forward
neural network topologies were discussed which re-
alize these functions in another way. Symmetric as-
sociative neural nets in the tertiary associative areas
of the neocortex could not realize efficient higher-
order associative and cognitive information process-
ing without feature extraction in the primary corti-
cal areas and feature integration in the secondary
cortical areas [60]. The preprocessing of input data,
which is highly non-linear, is realized by Kohonen-
type networks of functional hierarchy.

In a Kohonen neural network neurons interact
under the constraint of lateral inhibition in order
to achieve specific responses of individual, localized
neurons to specific stimuli. Such specialization of
neurons emerges as a consequence of underlying
inter-neuronal interaction dynamics from ’compe-
tition for an information-representing role’. "Win-
ners’ in this ’competition’ are called cardinal neu-
rons. Thus, the Kohonen neural network provides
a mode of perceptual preprocessing as well as trig-
gering motor action [82, 70, 48]. For association ar-
eas of the neocortex, our Hopfield-type neural net-
works provide additional structure, accompanied by
virtual attractor-hierarchies, which is more appro-
priate for higher mental processing once the initial
stimulus analysis, primitive categorization and ab-
straction processes have been realized and carried
out by suitable Kohonen nets.

In this part we will extrapolate presented theo-
ries, which were to a large extend tested also by
author’s computer simulations [73] and were com-
pared with experimental (physiological) data, in or-
der to model higher-brain functions and processual
basis of consciousness. Various associative, intuitive
and even semantic processes could be approximated
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with models presented here; higher symbolic, lin-
guistic, syntactic, logical, inferential processes, on
the other hand, could not be modeled using these
models alone, but should be connected with sym-
bolic models of classical artificial intelligence [79] in
order to make a hybrid model. Semantic and con-
ceptual networks, language structures, and speech
production and recognition will not be presented
here.

There are theoretical and experimental indica-
tions (the last ones may perhaps be, for some sci-
entists, still controversial) that consciousness is re-
lated with quantum systems [23, 14, 76]. Such ideas
were theoretically introduced by Wigner, von Neu-
mann, Heisenberg, and later developed by Bohm,
Hiley, Stapp [91], Josephson, Penrose [71] and oth-
ers. The reasons for such a hypothesis, which
receives increasing support in recent years (Tuc-
son multi-disciplinary conferences [42]), will be dis-
cussed.

We feel that it is convenient to approach to the
research of quantum information processing with
a method of comparison of quantum and neural-
network mathematical formalisms. Information
processing capabilities of the neural network mod-
els were intensively and successfully tested in com-
puter simulations. Here their mathematical formal-
ism will be compared to the quantum formalism in
order to find similar, but (hypothetically) addition-
ally conscious, information processing capabilities
of quantum systems.

Haken’s synergetic model unites associative neu-
A multi-
level (originally three-level) synergetic network with

ral nets and multi-layer neural nets.

intra-layer and inter-layer connections is established
[40, 39, 38]. Each layer is actually its own asso-
ciative network which can have functional (cardinal
cells in the second layer) or virtual interpretation
(order parameters ¢y, — cardinal domains or neuronal
oligarchies in the second layer, or patterns ¢ in the
third layer). In Haken’s network order parameters
¢, measure the rate of overlap of a pattern ¥ with
the actual network-state ¢. So, ci is the projection
of U onto ¢:

cn =N v ¢ = (5, ).

(¢ is here the index of vector’s components and k
the pattern index.) The order parameter ¢j acts as
a coefficient in the series ¢= Zle Cr Uy

In a special case of localized feature representation
(as presented in the second part) the virtual order
parameter c; quantitatively represents the strength
of a cardinal neuron (a “dictator”-neuron) and its
corresponding pattern of neuronal population.

Such a synergetic network is probably the most
plausible model available for large-scale modeling
of (neo)cortical functions [75]. The neocortex has
physiologically relatively uniform structure [28] and
his enormous cognitive capabilities arise from col-
lective virtual processes which are still beyond the
methods of cognitive neuroscience [32, 19].

In modeling higher brain functions, associative
and synergetic neural networks may be used in a
generalized way, i.e., so that a generalized interpre-
tation of neurons is given. Generalized “neurons”
may be cortical columns or mini-columns, patterns-
attractors of various orders (M7 (n" virtual level),
etc. Generalized “connections” may be large-scale
physiological or virtual connections between cortical
areas, etc. [20].

As shown in figure 12, patterns-qua-attractors
are organized into a virtual hierarchy. Their dou-
ble nature is shown: they are patterns (figure 12:
left “boxes”) as well as attractors (figure 12: right
“boxes”).  Higher-order patterns contain lower-
order patterns. A large hierarchy of patterns is
a very flexible, mobile as well as sensitive and
continually-changing structure. It consists of a set
of levels in two senses: firstly in the sense of vari-
ous functional levels (as in feed-forward nets), and
secondly in the sense of various virtual levels of ab-
straction, or meaning, generality, and composition
[75]. We usually refer to these virtual levels of struc-
ture in the following terms:

— neurons (first biological level)

— patterns (second level — first virtual level, gener-
alized neurons)

— higher-order patterns, schemes, categories, col-
lections of patterns, groupings of patterns; meta-
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representations, symbols
— dynamic pattern-sequences: associative chains,
episodes, trains of thought
— pattern manifolds: combinations of higher pat-
terns of various types and origins with some com-
mon feature; semantic, symbolic or conceptual net-
works
— global attractor conglomerates (personality, ego),
consciousness (in multi-level interaction with sub-
cellular and quantum systems)

Elements at each level are gestalts of lower-level
elements.

SPIELE
;

N

@7

»

T

|
I
|
|
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FIG. 12. Virtual hierarchy of patterns-qua-attractors.
Left: their configurations; right: their locations in
configuration-energy space (in the moment of recogni-
tion).

A neural net with such a structure of virtual pat-
terns operates and restructures itself simultaneously

at all levels, so that these structures consolidate op-
timally with each other in a self-organized and in-
teractive manner.

Dynamical pattern-sequences are a special case
of higher-order pattern-conglomerate. They arise
if neurons (e.g., in Hopfield’s model) are intercon-
nected asymmetrically. This means that the influ-
ence of one neuron on another is different from the
influence of the second neuron on the first, because
of different transmission rate in different directions:
Jij # Jji. This results in delays in processing which
gives rise to attractors moving through the configu-
ration space. The system forms at time ¢; a pattern
71, at time to forms pattern v, etc. Potential wells
are conserved, but their minima are displaced from
configurations which lose stability to other config-
urations. These sequences of patterns or episodes
are actually associative chains, since the predeces-
sor pattern is an immediate causal precursor to the
successor pattern [70, 72].

Ordered and directed sequencing triggers self-
organized formation of a causal process within the
framework of a larger parallel-distributed process.
A neural net having asymmetric connections causes
such inhomogeneities which form a more constant
potential gradient, along which the system descends
faster from one configuration to another. Such
emerging sequential processes have a larger asso-
ciative context through its connections with other
patterns which are within the range of attraction
of the observed dynamic pattern. If individual pat-
terns, which are transitive elements of such pattern
sequences, are connected with their cardinal cells,
or corresponding order parameters, in speech cen-
ters (Wernicke area), then such a train of thought is
encoded or symbolized, and it is possible to verbalize
it (Broca area) [60].

We will only mention the last essential way of
binding patterns into a complex pattern or an in-
formational unity — coherent oscillations [39, 88].
The frequencies and also phases of oscillation of
neuronal activities may get locked: oscillating ac-
tivities of neurons or whole assemblies are synchro-
nized into the same frequency and the same phase
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or at least constant phase difference. Such ordered
collective oscillating behaviour is called coherence.
If patterns of neuronal oscillations are frequency-
locked and phase-locked, then they have a common
feature, or something in common in more abstract
sense, and represent an informational unity — a cat-
egory of higher order.

3.2 Synergetic levels in brain: neural,
sub-cellular, quantum and virtual
processes

In a neural network neurons are constantly inter-
acting, and whole neuronal patterns are interacting.
Neuron’s activities reflect each other. But it seems
that also a very large and complex neural network
with its recursive dynamics is not enough for the
“real” consciousness as a global and unified self-
reflective process [42]. Neuronal patterns merely
represent the objects of consciousness and take part
in information processing concerning these objects,
but these patterns do not represent consciousness it-
self. It is a question how many different perceptions
are bound into an unified multi-modal experience
where there are no traces of neuronal signaling and
other material processes any more. Only a clear,
relatively static qualitative experience remains.
There are indications that consciousness is con-
nected with quantum phenomena [71, 91]. The
main reasons for this hypothesis are the following;:
— Quantum systems are the microscopic basis of
all physical processes, including biological or psy-
chophysical processes. All the classical world arises
from the overall quantum background.
— Quantum systems transcend even the division
of particles and waves, or interactions, or fields
[23, 17]. Quantum systems, especially sub-quantum
systems, are holistic in nature [16] — they cannot
be satisfactorily analyzed into interacting funda-
mental elements, but act synthetically as indivisi-
ble parallel-distributed processes. As such, they are
good candidates for correlates of the unity of con-
sciousness.
— Neural networks with their rigid neurons and
synapses, in spite of their very subtle virtual pro-

cesses [75], seem to be too mechanistic, too dis-
crete and too deterministic for consciousness and
phenomenal qualia, i.e., qualitative perceptual ex-

periences.
On the other hand, all thought-processes,
including consciousness, seem to arise from

Objects of conscious-
ness and stream of conscious thought seem to be

complez-system-dynamics.

represented in some physical or at least informa-
tional (virtual) ”medium”. That "medium” has to
be a complex-system which only is enough flexible,
fuzzy, adaptive, and has good self-organizing and
recursive abilities. Because the mathematical
formalism of the neural network theory is confined
to the collective system-dynamics, it remains to
a large extend walid also for complex systems of
other basic elements [74]. So, our formal neurons
and formal synaptic connections are not necessary
biological neurons and synapses (or, in models,
artificial neurons—processors). There are various
synergetic biological systems which may be mod-
elled in a neural-network-like way and have relevant
roles in micro-cognition processes on various levels:
— dendritic trees where neuronal dendrites have
similar summation-tasks to that of a neuron
[62, 39](Pribram);

— subcellular structures: cytoskeleton, especially
microtubules, and other biomolecular systems of
electric or magnetic dipoles which may have a role
of an interface between the neural and the quantum
level [41, 71];

— webs of quantum particles (e.g., electrons) with
their spins [92, 93];

— a "continuum” of sub-quantum “beables” (Bell)
or "hidden variables” [16, 44]; etc.

3.3 Neuro-quantum coherence needed
for consciousness

Consciousness itself ("pure” consciousness without
an object of consciousness) may be associated with
the quantum field, or better, with the ”overall
sub-quantum sea” [33]. On the other hand, con-
sciousness having some object as its content can-
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not be associated merely with a specific quantum-
informational state. If a specific mental represen-
tation is processed under control of consciousness,
this specific representation, which is associated with
a pattern of neural activity, is coupled or correlated
with a specific quantum eigen-wave-function. This
quantum eigenstate was made explicit by the ” wave-
function collapse” which was triggered by corre-
sponding neural processes.

The ”wave-function collapse” is a transition of
the quantum state from a state described by a lin-
ear combination of many quantum eigenstates to
a "pure” state which is one eigenstate only. So, a
superposition of many ” quantum patterns” is trans-
formed into a single ”quantum pattern” only.

Collapse of the wave-function means a selective
projection from subconscious memory to the con-
scious representation which was explicated from the
memory. There are two possible versions of mem-
ory and memory-recall: the quantum one (just men-
tioned), or the classical neural one. In the first case
memory may be a parallel-distributed pattern in the
system of synaptic connections. In the second case
memory could also be realized as a quantum holo-
gram, as a “pattern” in the implicate order of Bohm
and Hiley [17], or even as a set of ”parallel worlds”
according to the many-world interpretation of quan-
tum theory by Everett [26].

Brain-mind is necessarily a multi-level phe-
nomenon, because we cannot totally divide pure
consciousness from the object of consciousness
which may be an internal virtual image or a real ex-
ternal object. We can then constitute the following
overall scheme: Pure consciousness is of quantum
nature; virtual representations are associated with
neuronal patterns; external objects are of classical
nature. Making a synthesis of these levels, neuro-
quantum coherence is constituted as a basis for
consciousness-about-some-object-of-consciousness.

Quantum mechanics governed by the Schrédinger
equation doesn’t make attractors manifest until the
”wave-function collapse” occurs. In that case, be-
cause of the interaction of a classical macroscopic
system (either measurement apparatus, or environ-

ment, or our sensory apparatus) with the quantum
system, the wave-function ”collapses” and a specific
quantum eigenstate (a ”quantum pattern”) occurs
as an attractor. So, there are quantum virtual struc-
tures also, and they cannot be reduced to a quan-
tum eigenstate alone, because they occur only as a
result of interaction with a classical system. Thus
quantum virtual structures are (re)constructed as
a result of so-called quantum measurement where
the "measurement apparatus” may be our sensory
and associative neural system directly, or a machine
which is observed by that neural system. In both
alternatives the ”wave-function collapse” occurs as
a result of a specific interaction with a classical
system. The probability of the ”collapse” is very
much higher if the interaction is knowledge-based
[74]. That’s like in the case of a radio: if we know
the right frequency, we are able to receive the asso-
ciated information.

3.4 Comparison of the mathematical for-
malism of associative neural network
theory and quantum theory

Main functional analogies and their informa-
tional significance

New consciousness studies give us reason to in-
vestigate parallels between quantum processes
and neural-network-processes. Many mathemat-
ical analogies of the theory of associative neural
networks and the quantum theory can be found.
Because we know that neural network simulations
perform well, we can search for similar effective
cognitive-like information-processing capabilities
on the quantum level also. Let us make an overview
of neuro-quantum analogies.

1. NEURONAL-STATE-VECTOR «— QUAN-
TUM WAVE-FUNCTION:
In neural network theory the state of the system
of neurons is described by ¢(7,t) which denotes
the activity of an individual neuron (located at
7) at time t.
neuronal configurations ¢ which represent some

Neuronal patterns U are special
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meaningful information. In quantum theory the
state of the quantum system at location 7 and
time t is described by the wave-function W(7,t)
[15]. They both represent a state vector describing
a parallel-distributed configuration of a complex

system.

2. NEURONAL STATE IS A SUPERPOSI-

TION OF NEURONAL PATTERNS «— QUAN-
TUM WAVE-FUNCTION IS A SUPERPOSITION
OF QUANTUM EIGENSTATES:
A neuronal configuration ¢ may be described as a
linear combination of neuronal patterns v} (k =
1,...,p). p is the number of patterns represented si-
multaneously in the combination. Similarly, a wave-
function ¥ can be described as a linear combination
of eigen-wave-functions v, (”quantum patterns”):

q(7,t) = Z cx(t) vp(7); (17)

(i t) = Y Cult) vi(7). (18)

Neuronal patterns and eigen-wave-functions can
represent some object of consciousness on different
levels. So, as opposed to other configurations,
they represent informational states which have a
meaning, because they are correlated with some

environmental objects.

3. Both sets of vectors, ¥} and 9 , usually
have the properties of ORTHOGONALITY and
NORMALITY. The first property, if satisfied,
ensures error-free recall of patterns, because it
excludes mixing between patterns or corruption
of a pattern because of this. So, the interference
between patterns must be destroyed during recall in
order to get one of them out properly. However, in-
terference must be eliminated during pattern-recall
only; in associative memory interference between
If eigenstates ¥ and v are

not orthogonal completely, recall is not so pure, but

patterns is essential.

associations between patterns may become more

effective.

4. COEFFICIENTS OF THE SERIES: SYNER-

GETIC ORDER PARAMETERS «— QUANTUM
PROBABILITY COEFFICIENTS:
C}, are the quantum probability coefficients, and cy,
are the neural or synergetic order parameters. In
the linear combination each pattern is represented
by a corresponding coefficient. The coefficients de-
scribe how much a specific pattern is represented
in the actual state of the system, or how probable
it is that the corresponding pattern will be recalled
(reconstructed, or explicated from the superposition
of many patterns). Thus, the time-dependent coef-
ficients encode quantitatively the meaning of their
patterns. They describe how strong a role a given
pattern has in contextual system-dynamics.

e (t) = / / (7 ) dFdt;  (19)
/ / D7 ) diidt.  (20)

Asterisk denotes the operation of complex con-
jugation. If variables o) or 1 are real, we
may delete the asterisk. Mathematically, coeffi-
cients ¢ and Cj describe projections (in terms of
scalar products (.,

Cr(t) = (Yx, ¥

.), in Hilbert space, for example).

5. SPATIO-TEMPORAL INTEGRATION OF
NEURONAL SIGNALS «—— FEYNMAN’S VER-
SION OF THE SCHRODINGER EQUATION:
The dynamical equation for one neuron includes a
spatio-temporal integration of signals from all other
neurons which are connected to that neuron. Neu-
rons integrate along spatio-temporal trajectories,
not separately in space and time [11]. So, the state
of a neuron at position 75 and time to is given by
J-weighted summation of all signals and the whole
history of signals':

o(Ta,t) = / / J(71, b, o t2)q(71, 1) ddty (21)

¢, is always greater than t; — because of the ”arrow of
time”.
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where J(7,t1,7s,t2) is the strength of an individ-
ual synaptic connection. J’s are the transmissions
of real synaptic connections between two neurons
(spatially separated, but realized at the same time)
or correlations between states of different neurons
at different times, represented at least virtually.

In non-relativistic quantum mechanics the dy-
namical equation is the Schrodinger equation. Here
it is written, analogously to the neural equation
(21), in Feynman’s form [44]:

U (i, ty) = //G(Fl,tl,FQ,tg)\If(Fl,tl)dﬂdtl. (22)
G(71,t1,72,t2) constitutes the Green function
or an element of the quantum propagator [13].
The propagator G is a matrix which describes a
parallel-distributed transformation of the whole
system from an initial state W(71,¢1) to the final
state W(7s,ta). It is essentially a sort of Huygens’
principle. The system transforms itself into a new
state by exhibiting numerous internal interactions
between its constitutive ”quantum points” (some
mathematical ”basic elements” of the system).
Informationally, transformation (21) or (22) is
association. One pattern (concept, idea) is trans-
formed into another pattern (concept, idea) by a
collective informational interaction of input data
(encoded in the state vector, i.e. ¥) with memory

data (encoded in the system of connections or
interactions described by the Green matrix G).

6. MEMORY IN AUTO-CORRELATIONS OF

PATTERNS: SYNAPTIC STRENGTHS OBEY-
ING THE HEBB RULE «— GREEN FUNC-
TIONS:
The kernels of dynamic equations (21) and (22) are
given as a sum of auto-correlation functions. The
transmission-rate of an individual synaptic connec-
tion J is determined by the Hebb learning rule as
a sum of auto-correlations between its two neurons
participating in various patterns ¥:

p
J(71, b1, 7, t2) = D (P, t) (7, ta)
k=1

or J(r,7mh) = Z vg(T1) vg(T2).  (23)
k=1

Similarly, the Green function [13] is given as a sum
of auto-correlations of individual quantum eigen-
states y:!

k=1
p
or  G(F, ™) = Y vp(F)* (). (24)
k=1
7. ADAPTIVE MEMORY IN CROSS-

CORRELATIONS: SYNAPTIC STRENGTHS
OBEYING THE GENERALIZED HEBB RULE
OR DELTA RULE «— DENSITY MATRICES:

The kernels of dynamic equations (21) and (22) can
be written also as sums of cross-correlation func-
tions. In special cases they can be written as cross-
correlation functions of a pattern and a difference
between two patterns. In neural network theory we
usually use cross-correlation of a mnovel pattern vy
with a difference or discrepancy of this novel pat-
tern Uy and a desired or average pattern v (or ¥)
where 7, (or ¥) represents old knowledge [54, 56].
A Hebb-like learning rule which is based on cross-
correlation of a (novel) pattern vy and a difference
g — U is called delta learning rule. It is used for
novelty filtering: new information, not represented
in the old neural pattern 7}, is extracted and stored
newly. Therefore the network finally adapts, i.e.,
optimally condenses and combines components of
new information (ty — ¥j) with the whole knowledge
collected up to now. The generalized Hebb learning
rule using cross-correlations of patterns is given as

follows.
p P
J(F, P, t) = D> Aiw vp(F1, t) vp (P, t)
k=1h=1
P P
or J(Fl,FQ) = ZZ )\kh ’Uk;(Fl) 'Uh(FQ). (25)
k=1h=1

!Many physicists use another definition of the Green func-
tion, and there is an i (i = y/—1) in front of integrals of
equation (6) in their case. The relation is: Gireir—des =
1 Gour—def-
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This learning rule works also if @} is a difference
pattern @y — ¥ or novelty pattern @y — v (delta rule),
or even if also 7}, is a difference pattern ¥, — ¥ or
novelty pattern ¥, — v (a case similar to equation
(15) from section 2.5 where vy = v).

Let us list presented versions of Hebbian cor-
relations once again. In the previous case (no.
6) strengths of individual synaptic connections
were determined by a sum of auto-correlations
(Hebb rule) of patterns, i.e., activity-correlations
of connected neurons which have a role in the same
patterns. In this case (no. 7) synaptic strengths are
given by a sum of cross-correlations (generalized
Hebb rule) of patterns, i.e., activity-correlations
of neurons which have a role in different patterns.
If one of these patterns is a difference pattern
(difference between the first pattern and a reference
or average pattern) then this generalized Hebb
rule is called delta rule. So, in the first case (no.
6) a synapse represents correlation of neurons
constituting the same pattern, therefore we talk
about pattern-auto-correlation, i.e., correlation
of parts of the same pattern. In the second case
(no. 7) a synapse represents correlation of neurons
constituting two different patterns, therefore we
speak about cross-correlation or about correlation
between parts of two different patterns.

Similarly to the present case (no. 7) of neural
cross-correlation in equation (25), the density ma-
triz p is given as a sum of cross-correlations of indi-
vidual quantum eigenstates ¢y and y:

p p
p(F, ) =D prn Ye(P)* (7). (26)
k=1 h=1

Comparing equations (25) and (26), and knowing
that the generalized Hebb rule for J realizes effi-
cient associative memory, we may infer about in-
formation processing capabilities of p — the quan-
tum probability density matrix or quantum statis-
tical operator, respectively.! Just note also that

LOf course, the density matrix itself does not describe
(or even execute, in simulations) the information-processing
input-to-output transformation in such a way as propaga-

the so-called diagonal parts of the density matrix
p(7,7) = S0 _, prx | ¥i(7) |* give a superposition of
real-valued and thus measurable quantum probabil-
ity densities with “weights” pgr. prn is analogous to
Ak which acts as the so-called learning rate A, (see
equation (16) and [40]).

Interaction scheme no. 6 realizes auto-
association: completion of a neural pattern
or quantum pattern v from partial information.
On the other hand, interaction web no. 7 realizes
hetero-association: association form one pattern 7
(or ) to another pattern o, (or ¢y). Similar quan-
tum information processing using p-decomposition
was discussed by Ohya and Matsuoka [69, 65].

They related it to the Ising model.

8. NEURONAL-PATTERN-RECONSTRUC-
TION «— "WAVE-FUNCTION COLLAPSE”:
The most important neuro-quantum analogy is the
following. Pattern-reconstruction in a neural net-
work

= Uk () (27)

is very similar to the ”collapse of the wave-function”
in a quantum system

U(Ft) = Y Cu(t) vu(i)
=1
= U(rto) = g, (7). (28)

For reasons presented in section 3.3 this is a very
important feature of cognitive processes. Processes
(27) and (28) are both a result of the influence from

tors or Green functions do. They are active-memory descrip-
tors, but the density matrix is a “passive” description (like an
“archive”) of statistical and correlational properties of quan-
tum states in the present and history of the system. However,
the density matrix may represent an important quantitative
description of relations of eigenstates (patterns) which are
crucial if a quantum system is harnessed for information pro-
cessing, or here specifically for cross-correlations or hetero-
associations. Authors like Alicki, Ohya and Matsuoka have
theoretically described quantum information transmission us-
ing density matrices and their tensor products.
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the system’s environment. The environment selects
those neural/quantum pattern which is the most
similar (or is correlated) to the state of environ-
ment.

Neural-pattern-reconstruction and wave-function
collapse are results of a transition from the m-
plicate order (Bohm’s term for latent, implicit,
inactive, potential non-Shannon information only)
to the explicate order (manifest, active, realized
Shannon information) [17]. The implicate order
represents a combination of very many possible
states or processes (left-hand side equation in (27)
and (28)). It is analogous to a set of so-called
”parallel worlds” or parallel sub-branches of the
general wave-function proposed by Everett [26].
Explicate order, on the other hand, represents a
state or process which is at a moment physically
actualized (right-hand side equation in (27) and
(28)).

(implicate) states, or is a result of their optimal

It is ”chosen” from a set of potential
”compromise”. “Taking choice” may be an “act
of consciousness” which takes some information
out from memory or subconsciousness (implicate
order), and makes it explicit and conscious.

9. NEURAL DUALITY AND QUANTUM DU-
ALITY:
An interesting neural analogy of the Heisenberg un-
certainty principle of quantum mechanics is repre-
sented by an inability of simultaneous determination
of patterns in the system of nmeurons ¢ and of pat-
terns in the system of interactions or connections J.
We are unable to make a pattern explicit in a sys-
tem of neurons, and to make a pattern explicit in
the system of connections at the same time. Only
one pattern, which is at the moment realized in the
system of neurons, is made explicit. All the others
are present only implicitly in the system of interac-
tions, i.e., in the coupling-rate. In cognition we have
a similar situation: we can be aware of one pattern
only which has been extracted from memory. Other
memory patterns remain unconscious and implicit.

The so-called position (z-) representation of
quantum theory can be approximated by the system

of neurons ¢. The so-called impulse (p-) representa-
tion can, on the other hand, be associated with the
system of interactions J which regulates all transfor-
mations of the network-state. Thus, the quantum
duality (particles/waves, or particles/interactions,
or fermions/bosons, respectively), has a counterpart
in neural duality (neurons/synaptic connections, or
neurons/interactions).

Sometimes we find that a network where neurons
and synapses are exchanged has a similar behaviour
as the original one. Thus, in general there is a
symmetry of neurons and synapses (or interactions)
which represents invariance under neurons-synapses
exchange. If we compare, for example, simulations
of associative neural networks by this author [73]
and simulations by Menneer [66]' , we see that ex-
plicit processing, which is realized in the system of
neurons in this-author’s case, is similar to those ex-
plicit dynamics which is realized in the system of
connections in some Menneer’s cases. Menneer in
some cases performs “collapse” (pattern selection
and reconstruction) in the systems of connections,
but this author performs it in the system of neu-
rons. She also emphasizes analogy of this collective
dynamics with processes during quantum measure-
ment. We cannot extract information in the system
of neurons and in the systems of synaptic connec-
tions at the same time — not in both systems. This
is a neural version of uncertainty case. We have to
make a “collapse” with output information repre-
sented either in the system of neurons or in the sys-
tem of synapses. Without a “collapse” the interplay
of neurons and connections is always an indivisible
holistic process.

Like in classical dynamics, for integrable sys-
tems, there is a complete equivalence between the
Schrédinger equation for ¥ and the Liouville-von
Neumann equation for p [81]. Both kinds of
description are complementary on quantum as well
as classical (e.g., neural) level.

!Comparing with [69, 65] similar symmetry-observations
can be made concerning the density matrix p and its decom-
positions.
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10. QUANTUM AND NEURAL WAVELET

UNCERTAINTY PRINCIPLES:
Some more formalized uncertainty analogies can
also be found. In the neural network and early vi-
sion theories we have uncertainty principles which
are similar to the Heisenberg uncertainty princi-
ple. Gabor proofed [62] that the Heisenberg un-
certainty principle is a special case of his general
frequency/time uncertainty principle: AfAt > 1.
Error in measuring frequency Af is inverse propor-
tional to the error in measuring time At. Multi-
plying both sides of Gabor’s inequality by Planck
constant h, and knowing F = hf, we obtain the
well-known Heisenberg’s version: AEAt > h. Ga-
bor uncertainty principle AfAt > 1 is applicable
whenever simultaneous measurements of an observ-
able and of its Fourier transform are made [62]. Pre-
viously mentioned x/p, and E/t Fourier or uncer-
tainty pairs of conjugate variables are thus similar
to the f/t pair of Gabor’s information theory and
x/u, pair of Daugman’s vision theory. In Daug-
man’s theory [22] spatial frequency u, determines
the wavelet’s location in frequency domain so as
x determines location in ordinary spatial domain.
It is physiologically supported that Gabor’s and
Daugman’s theories are applicable for representing
spatio-temporal visual images and information fil-
tering in the visual cortex [22]. This is a large-scale
field-theory-like approach in contrast to usual dis-
crete neural-net-models.

The Gabor inequality changes to equality
AfAt =1 (minimal uncertainty) if neural wavelets
are modeled by complex oscillatory functions having
Gaussian envelope. These are Gabor functions 1y,
which constitute basic information cells represented
in space and spatial frequency areas

m(t — jAL)?
im0
(29)

They are similar to quantum coherent states or wave
packets. An arbitrary function ¥ can be represented
by elementary Gabor functions v as their linear
superposition W = 377 37F°  Cjgibjr, where
Cir = (Y, Y1)/ || ¥k || (if wavelets are orthogonal),

) exp 2mikAf(t — jAL)).

analogously to the neural-net-state expansion (17)
with coefficients (19). Gabor wavelets are, however,
in general not orthogonal.

Daugman [22] presented psycho-physical ana-
logues of Gabor uncertainty principle for 2 di-

mensions: AxAu, > ﬁ and AyAu, > ﬁ,
which give together AzAyAu,Au, > —1617@.

MacLennan [62] naturally added Gabor uncer-
tainty principle for 3 dimensions: AzAu, > ﬁ,
AyAu, > L, AtAf > L, which give to-
gether AzAyAtAu, AuyAf > 64%. So, in the 3-
dimensional case each information cell, represent-
ing a “quantum of information”, is a 6-dimensional
hypercube (Az, Ay, At, Aug, Auy, Af) localized to
spatial area AxAy and to temporal interval At,
and furthermore tuned to spatial frequency bands of
width Awu, and Au,, and to (temporal) frequency
band of width Af.

This overview of uncertainty relations of the
theory of processing in the visual cortex showed
that the uncertainty relations in general, including
Heisenberg’s quantum-mechanical version, are con-
nected with informatics of parallel-distributed com-
plex systems in general, even classical ones such as
associative neural nets. Uncertainty relations arise
as a result of observational perturbation of quantum
systems, but it may emerge also in the case of clas-
sical (neural) complex systems. This observational
perturbation has much more evident and exact con-
sequence (such as conjugate pairs of non-commuting
observable operators) in quantum complex systems,
because of their microscopic scale, than in classical
complex systems.

Bohm noted that if we are starting to think about
our own thoughts, we change them with this self-
observation act. That’s uncertainty of conscious
self-reflection which Bohm has related to quantum
uncertainty [15].

Discussion of discrepancies in presented
analogies

There is a difference between equations (23) and
(24): the latter one includes complex-valued vari-
ables which are necessary for the quantum case, but
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just possible for the classical neural-net case. That
prevents us from claiming that quantum systems are
a very complex sort of ”neural networks”. Quantum
systems are much more subtle and flexible, because
they don’t have well-defined fundamental particles
and interactions. So, no well defined basic formal
“neurons” or formal “connections” can be found —
no well-defined “hidden variables” of Bohm [16].
Anyway, in spite of this difficulty, the mathematics
of the usual Copenhagen interpretation of quantum
mechanics is essentially very close to the mathemat-
ics of associative neural networks. So, the limits of
our or similar useful [7] analogies are also limits of
the orthodox (Copenhagen) quantum theory.

Replacement of complex-valued quantum equa-
tions with a system of real-valued equations [15, 17]
or introduction of complex numbers into the neu-
ral network theory (e.g., networks of coupled oscil-
lators [40, 63, 97, 90, 8], quantum neuro-holography
[85, 84, 86]) would support the search for further
analogies with the neural network theory. Complex-
number variables in quantum formalism obviously
have a very deep meaning. ¥* as opposed to ¥
is connected with the phase-conjugated or time-
reversed dynamics. So, in quantum systems we
have a superposition of forward and backward
time-evolution. In neural networks this time-flow-
superposition is transformed into superposition of
associative transformations in the opposite direc-
tions in space, or the superposition is completely
collapsed into single directed dynamics (time se-
quence of patterns in the direction of the arrow of
time). Observed quantum systems reflect an intrin-
sic complementary duality which is evident also in
the wave/particle double nature or in location and
momentum representations. Probably this appar-
ent duality, and uncertainty principles also, are a
consequence of an active observer’s participation in
the observed quantum process.

In spite of the fact that quantum systems are de-
scribed by a dual complex-valued (real plus imagi-
nary) description, but the usual neural net models
only in a real-valued description so far, we must
emphasize that there are very interesting functional

and mathematical analogies between quantum and
neural levels in the case of oscillatory dynamics of
neurons. Specifically, if we have an associative net-
work of coupled neurons with oscillatory activities
[40, 97, 63] complex-valued mathematical formal-
ism becomes relevant for neural nets also. Our pre-
sented neuro-quantum analogies, which in this case
contain information about phase-correlations, then
In fact, John G.
Sutherland has created a simulation of such a net-

become much more important.

work of neurons with oscillatory activities, called
“Holographic Neural Technology”, which processes
very successfully. A condensed presentation by
Sutherland, entitled “Holographic model of mem-
ory, learning and expression”, was published in 1990
in the International Journal of Neural Systems, vol.
1, pages 256-267, which is highly recommended.

Some further analogies

11. QUANTUM NEURAL HOLOGRAPHY:
WAVELET-MIXING OR CONVOLUTION:

In neural networks memory consists of
(auto)correlations between patterns. In quan-
tum mechanics phase differences between different
parts of the wave-function may have a similar role
[15]. They control the time evolution of probability
distribution involving interference of the contribu-
tions of different stationary eigen-wave-functions.
In quantum neuro-holography we have interference
patterns of coherent neural wavelets. Here phase
shift ¢ encodes the degree of correlation between
components of coherent wavelets. On the other
hand, their amplitude encodes the significance
of synchronized wavelet components [85]. In-
deed, wavelet mixing Y (t)dt @ ¥y (t')dt’, (mapped
onto) spatio-temporal cross-correlation function
[ 2ot (t + At)y(t)dtt [64], or convolution,
etc., are examples of bilinear forms similar to
the generalized Hebb learning rule used in neural
networks. So, quantum holography and theory
of associative neural nets (in particular, if neu-
rons have oscillatory activities) have significant

mathematical analogies which are a consequence

1y denotes a fixed spectral parameter.
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of similar collective dynamics in both complex
systems.

In generalized neural network theory we have
“matrices of (synaptic) connections” which encode
correlations of two neural patterns. In holography,
on the other hand, we have holograms which en-
code correlations of two quantum-optical signals,
i.e., their interference. In both theories we use sim-
ilar mathematics for similar information processing
as long as we can neglect details in the structure of
basic elements of the network.

Elements of the system are, of course, different
This brings differences between quantum
holography and associative neural nets, but it

again.

seems that brain realizes quantum-holographic-like
and neural-network-like processing on different
scales. So, in spite of differences in “anatomical”
details, we may speak about fractal-like multi-level
synergetic processing in brain. This is caused by
similar “sociology” in networks on various bio-
physical levels, i.e., quantum, sub-cellular, neural,
virtual or conceptual networks or “holograms”.

12. PHASE RELATIONS IN QUANTUM
HOLOGRAMS «— STRENGTHS OF FORMAL
SYNAPSES:

Changing the phase ergen-
wave-functions (e.g., signals)
is analogous to the learning-process in neural
networks where new pattern correlations are added
to the synaptic correlation-matrix. As mentioned,
conventional neural network theory does not incor-

relations between

quantum-optical

porate neurons with oscillating activities, although
this is observed in brain. Only some more advanced
neural theories introduce oscillating neuronal
activities and put relevance to phase-relations or
phase-correlations between neurons with oscillating
firing rates. Phase-correlations are an essential
ingredient of (quantum) holography, therefore asso-
ciative networks with oscillating neuronal activities
are certainly more similar to holographic devices
than conventional associative neural networks. If
we study networks with oscillating neuronal activi-

ties, we find similar associative memory capabilities

as in conventional associative networks [40] and
similar phase-coupling or frequency-coupling (co-
herent behaviour) as with wavelets in holography.

13. “COLLAPSED” QUANTUM SUPERPOSI-
TION «— FORMAL NEURAL NETWORK:
Quantum holography, however, introduces some-
thing more. It gives opportunity for introduction
of complex conjugate form of a wavelet. Complex
conjugate wavelet 1* is a time mirrored version of
the original wavelet 1.

The well-known quantum bilinear form ™ rep-
resents a combination of a state vector (wave func-
tion) ¢ with its phase-conjugated (time-mirrored)
form *. Together they give real-valued probabil-
ity density | ¥ |>= p, in the case of a pure state.
For “mixtures” a weighted sum of 1, has to be
written [81] (in general this gives expression (26)).
Thus, in quantum world we have superpositions of
many possible networks, processes and “arrows of
time”.

Only one network, process and “arrow of time”
is, however, realized explicitly during measurement
process, and this makes situation similar to the case
of neural nets. To summarize roughly, a generalized
(mathematical) neural network emerges as a result
of “collapse” of a quantum superposition of implicit
“networks”. To say as simple and short as possible:
mathematical neural network (network of mathe-
matical points or formal “neurons” which interact
intensively) is a “collapsed” quantum system.
Biological neural network evolves as a macroscopic
replica of these fundamental dynamical principles.

14. Fourier-like CORRESPONDENCE RULES
between the above equations can be shown first for
the neural case (30), and then for the quantum case
(31), using the following calculation.

q(73,t2)

://J(ﬁ,tl,fﬁ,tz) q(71,t1) drdty

p
- / / 1" o7 h) v, 1)) a7, h) didty
k=1
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p
=Y ()l [ulih) an) didn)
k=1

P
- ch vg (7, 1)
k

I
or Z (30)

In the last step we have used definition (19) for

time-dependent patterns. For the stationary case

we delete the time integral.
U (7, ta)

://G(Fl,tlfg,tg) U, 4) ditdh

p
= //[Z Yr(T1,t1)" Yr(7o, t2)] W(r1, 1) dridty
k=1

p
S (o, )] / / D71, 0)* UL ) didt)
k=1

(7,t)

or

P
= Z Ci(t
k=1
P
> (31)
15. The following version of dynamic equations
can be derived from neuro-synergetic equations (21)
and (23) which are here somewhat generalized. The
so-called attention parameter \j is added [40]. At-
tention parameter A\ of the pattern ¥j is an eigen-
value of the matrix J with eigenvectors vy: J U =
Ak Uk - (In quantum case, analogously, ¥ are eigen-
states of the density operator p with eigenvalues
pr [65]). We insert a generalized version of the
Hebb rule (23) into the time-dependent equation
(21). In the second step we use definition (19) for
time-dependent patterns. For stationary case we

can delete the time integral.

q(72,t2)

p
— / / 15" M vk, 1) v (o t2)] a7, 1) dFidty
k=1

p
=> X Uk(F%tQ)[//Uk(Fl;tl) q(71,t1) diridt]
k=1

- Q(Fa t) = Ak C Uk(f"t)

or ¢(r,t) = Ak ¢ vp(7T). (32)

I Mbﬁ
-

In quantum case we can make the following calcu-
lation starting from the time-dependent Schrédin-
ger equation with the Hamiltonian operator H. In
the last step we use the stationary Schrédinger
equation H ¢(7) = Ej ¢(7) where Ej is the
energy-eigenvalue.

B (1) = BU(F 1)
= H[>_ Cpipy ()]
k
= ZCkH%Z)k =Y CrEpti(F). (33)
k

We thus obtain

(7t ﬁ Z w Cr ()
or  W(Ft) = — — Z Ey. Cy U(7,t)  (34)
k=1

Here Ej (an eigenvalue which represents result of
a measurement of an observable quantity, i.e., en-
ergy) has a similar role as \i, the neuro-synergetic
attention parameter. Note the interdependence of
the process of attention and observation which is
here, probably not completely by chance, replicated

in the mathematical formalism.

16. The analogy no. 6 can be extended to rela-
tivistic domain also. In the relativistic case, where
1. are 4-dimensional vectors, the role of the Green
function G is realized by the S —matriz (scattering
matrix) [13]. Its elements are:

p 2

S(r,t1,7,t2) = — ZZ ¢i(7?17t1)* %(Fmtz)

k=1j=1
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if  ta >ty (35)

p 4 . .
S(F17t177727t2) = ZZ Q;[)]Z;(Fbtl)* @Z)']]g(FQatQ)

k=1j=3
Zf to < t7. (36)

The same Green function which propagates a so-
lution of the Schrédinger equation forward in time
propagates its complex conjugate backward in time.
It contains all the solutions of the Schrédinger
equation, including the bound states as required in
the completeness theorem

Yhet Yk (P, 1) P (7, 1) = 63(Fy — ),

with equal weight. In the relativistic S-matrix one
half of components (5 = 1,2) corresponds to the
positive-energy waves and the second half (j = 3,4)
to the negative energy-waves (antiparticles, i.e.,
particles propagating into the past: to < t;) which
were not present in the non-relativistic case [13].

17. Let us only mention two additional cases of
the “learning matrix”, similar to those of analogy
no. 6, which an interested reader may find useful
for further exploration. In his historical papers on
the theory of positrons [29] Feynman introduced the
quantum propagator (for to > 1)

G b, 7, t2) = Yop Ui (71 hp () e T Rt =t2)
which is inserted into (22)-like dynamical equation.
This version of the Green function explicitly encodes
the “phase”-differences in the exponents.

A similar expression from statistical physics is the
Green function of the Fokker-Planck equation [37]!
G(r1,7a,t) = f(F1,72) ¥ _ ~
X 300 R oo Yk (1) i (o) (#1 =22 = Akt
which is inserted into (22)-like equation for statisti-
cal distribution. f(71,72) is an exponential function
of new variables incorporating r1 or ro.

These short examples are only to remind the
reader that there are numerous cases in physics
where “neural-network”-like collective processes
take place which could be given informational

interpretation. Indeed they could, at least in

IFor a detailed context please see section 10.3. “Computer
Solution of a Fokker-Planck Equation for a Complex Order
Parameter” in Haken’s book. (Agp is an eigenvalue.)

principle, realize information processing similar (or
more advanced) than those described in the first
part.

18. L.I. Gould presented analogies of Pribram’s
holonomic brain theory and Bohm’s quantum in-
terpretation [35]. He emphasized the importance
of non-local processing in two different synergetic
levels in brain, which these two theories describe,
using quantum and neural versions of Hamilton-
Jacobi equation (his general theory see in [34]). Fur-
thermore, he showed that the non-local Schrédinger

equation

OV
lh@

h2
- v +/V(F1,F2,t) U(r3,t) diy  (37)

is quite similar to the non-local neural wave equa-
tion (derived after Pribram)

.oV
iv—

ot

2
_ %v%p + /U(Fl,Fg,t) V(5 0) Ay, (38)

Integrals in both integro-differential equations take
the whole system’s spatial volume. The poten-
tial per unit volume is denoted by V(7,7%,t).!
U(71,72,t) is the potential per unit volume at
the classical biomolecular level resulting from its
many-body interactions. v has the dimensions
of (length)?/(time). It combines the information
about the flow-velocity of ionic bioplasma to the
spatial frequency of isophase contours. For numer-
ous physiological in biophysical details (e.g., con-
cerning the ionic bioplasma in surroundings of den-
dritic membranes) we must here invite the reader to
see the works of Pribram [80], Umezawa, and Yasue
and Jibu [47].

ftw =4 emp(i%) (S has here the role of the

phase) is inserted into the non-local Schrédinger

Tt is not just potential as in usual Schrodinger equation.
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equation (37), the following “non-local probability
continuity equation” is obtained:

dp pVS)

8t+dw< -

=2Im (/V(Fl, 7?2,t)\I/(F17t)*\I’(F2,t)d7?1dFQ> . (39)

Here p is the probability density: p =| A |2. The
right-hand side contains the generalized-Hebb-rule-
like expression, as one can see after the integration
is made (see analogy no. 7), which might manifest
a “learning”-process as defined in the neural net-
work theory. Actually, because there is no >, (sum
over patterns) in expression (39), it could represent
gradual learning with iterative presentation of new
patterns - one after another.

3.5 Discussion

Although only some basic mathematical analogies
were presented here, numerous other parallels can
be found between the neural and the quantum pro-
cessing. They show that there may be a subtle ”di-
vision of labour” and an isomorphism-like relation
and cooperation between the neural and the quan-
tum levels. The relation is not ”isomorphic” strictly
in a mathematical sense, but in the sense of resem-
blance of levels and their dynamics. These levels
may be in a sort of fractal-relationship.

Here the question arises, what is the differ-
ence between ordinary quantum processes and men-
tal or even conscious information processes. The
first main difference between the physical and psy-
chophysical processes is that a synergetic (quantum
or neural) system itself is not intentional (does not
carry any mental information), but mind-brain is
intentional (carries specific mental contents). Only
consciousness is those entity which gives mental
interpretation to some synergetic processes, and
makes them, by this very act, informational in a
psychological sense (i.e., they start to represent in-
formation for humans).

The second difference is that the quantum system
itself does not have a relatively independent environ-
ment, but brain does. Therefore the brain models its

macroscopic environment in a specific and flexible
manner by wusing the biological neural network as
a macro-micro-interface and a (subconscious) pre-
processor for an unified conscious experience which
involves neuro-quantum coherence.

4 Overall discussion and conclu-
sions

We presented an introductory review of synergetic
models describing multi-level system-processing
backgrounds of perception, cognition and conscious-
ness. Starting with neural-net models and using
mathematical analysis we tried to provide, by in-
cluding novel quantum approaches, an unified pic-
ture of brain—mind and its cooperating levels.

We have argued that mind-like processing needs
neural or/and quantum virtual structures (attrac-
tors). Indeed, every collective state of a complex
system may constitute a specific gestalt (a specific
virtual unity) which cannot be reduced to the state
of constitutive elements of the system alone. The
problem is the formation of a specific isomorphic
(e.g., fractal) multi-level coherence. The practice
of computer simulations of neural nets shows that
we can govern the artificial virtual level implicitly
by regulating the artificial neuronal level explicitly
(“bottom-up influence”). If our dynamic equations
for neurons and synapses regulate the patterns only,
the attractors always accompany this dynamics im-
plicitly! The opposite can also be done: in physical
modeling by regulating system’s energy, in brain—
mind by “top-down influence” of consciousness.

Neuronal dynamical equations (used in com-
puter programs) are differential equations (with lo-
cal range of validity), but attractor-structures may
be mathematically described by variational calcu-
lus (with global range of validity). We do not nec-
essarily need both mathematical descriptions — one
is sufficient. Thus, we may organize one level and
the others will follow automatically. This is the rea-
son, why the reductionist approach usually works for
all practical purposes, and this is a chance for ad-
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vanced system-based artificial intelligence in form
of neural, quantum [59, 25, 21], and neuro-quantum
[49, 50, 51] or other hybrid parallel (synergetic)
computers.

Although there is no strict mathematical iso-
morphism in neural and quantum formalisms, sec-
tion 3.4 lists remarkable parallels which enable
us to use neural-net processing as a metaphor
for quantum network processing. These neuro-
quantum analogies are an original contribution
which enable development of quantum neural-net-
like information-processing ”algorithms”. Indeed,
in [78] we presented our new quantum associative
network model.!
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