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ABSTRACT

Carbon nanotubes based on molecule Cg, are analysed. These tubes can be considered as an
approximation of the smallest possible diameter for carbon fiber. The tubes symmetry is lower than
that of the icosahedral Cg¢p molecule and therefore the infrared- and Raman-active modes are
expected to split. We used this symmetry classification to consider the vibrational problem of thc
graphene nanotubes as quasi one-dimensional (1D) objects.

1. INTRODUCTION

Nanotube structure is the fourth member of the carbon family with a dimension of 1D
(diamond in 3D, graphite in 2D, and fullerene in 0D). A nanotube is a form of a rolled graphite
sheet with a diameter of a few nanometers. The carbon-atom hexagons on the nanotube are usually
arranged in helical fashion about the nanotube axis.

These graphitic nanotubes may possess some unusual mechanical, electronic, and optical
properties with a wide range of technological applications such as nanoscale devices, light-weight
and high-strength compositc materials, etc. connected with their crystalline perfection, various
possible helical structures, dimensionality, and the high efficiency of production [1]. Recent
theoretical studies have shown that the electronic properties of a graphitic nanotube depend strongly
on its helical structure [2-4]. It can be metallic or semiconducting, which implies that electronic
properties of nanotube can be tuned by changing its geometrical parameters.

The structure and electronic properties of graphitic nanotubes are intensively studied. Rela-
tionship between the structural symmetry and lattice dynamics of graphitic nanotube has been dis-
cussed [1].

The special interest of graphene nanotubes in relation to the broad field of carbon-fiber sci-
ence and technology is motivated by the fact that a graphene nanotube can be considered as one-
atomic-layered carbon fiber of the smallest possible diameter. Graphene nanotubes are thus of
interest for model calculations for structure property relations. In this paper we consider the
properties of various types of carbon fibers based on Cgg, particularly those based on a fivefold or
threefold axis, because of higher symmetry of these fibers.

2. SYMMETRY CLASSIFICATION OF GRAPHENE NANOTUBES

Higher-order fullerenes can be considered as the first members of a series of fullerenes
which form single-layer carbon fiber for the limit of large j. There are three major classifications of
the graphene nanotube, based on the Cg molecule, depending on whether they are related to
Jivefold, threefold, or twofold axes relative to Ceg. Generally speaking all graphene nanotubes
consist of a graphcne sheet rolled up around an axis to form a cylinder with top and bottom edges
that fit perfectly on to a Ce cap at either end, the caps being formed by cutting appropriately the Cg
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molccule in half. Both Cgos10; and Ceos1s, /=1,2... types of graphene nanotubes can be considered as
a limiting case of a vapour-grown carbon fiber with a monolayer thickness [1,2]. The diamcter of
this fiber is 0.683 nm, assuming an average C-C distance of 0.143 nm. Generally, diameter of a
nanotube can be larger, and the nanotubes can be closed or opened. The larger the diameter the
more similar are the properties of cylinder to the properties of graphene sheet: no infrared active and
one Raman active mode.

X

Fig. 1. Structure of a) molecule Cy as a first member of’ class Crosag; fibers and (right) 20 atoms repeating
part of cylinder, and b) molecule Cgp as a first member of class Cso. 20, fibers and (right) 20 atoms
repeating part of cylinder.

Fibers formed along a fivefold axis can be considered as molecules represented by the for-
mula Co+10, Where J is a positive integer. We can think of Ceo+y¢y fiber as composed of a rolled gra-
phene sheet containing j rows of armchair hexagons, each row containing five full armchairs. These
rows of hexagons are joined at their zigzag ends to form a cylinder with fivefold periodic boundary
conditions. Here, we need to distinguish the Cggs20; which have inversion symmetry (Dsz) and even
number of armchair rows of carbon atoms from Csgiz; fibers which have mirror plane symmetry
(Ds;) and an odd number of armchair rows in their cylinders.

If we assume formulae Croia0; (if j=0 we have Cyy) and Cgoszy (if /=0 we have Cgp) for these
two classes of molecules, the number and types of vibrational modes for the entire molecules are:

o Cypsag
2 =(12+3))A4, HO+3) A+ 1+6)) B +(22+6)) 2 +(9+3/) A1 +H(10+3 )42 " +(19+6/) EV " +(20+6)E2";
A", E2' and E;" are Raman active, and ' and 4," are intrared active;

o Cgogy
2 (13431411043 g H2346) E | +(24+6) Eg (1 1+3) A1, (12431 A0, H( 2346 Er+ (2446 En;
A\g E1g and E>g modes are Raman active, and 4z, and Ey,, are infrared active.

Fibers based on the threefold symmetry axis can be described as Ceprg;, j=1.2,... For j an
odd integer, the symmetry is D3, and for 7, an even integer, the symmetry is D It we assume that
the smallest molecules in these groups are Cos and Crg, these two classes can be described as
Coei3e-j=1,2... and Cag1367. 7=1.2,... The number and types of vibrational modes are:

e Cosrze
2= (27+10/)4,HQ20+8) A5 +(AT7+ 18/ H2 1+87)A 1, H(26+10/) 42, +(4T+18))E, ;

Ay, and Eyg are Raman active, and A4, are £, are infrared active;

o Crsesg
Y =(22+107)41 +(16+8)) Ao +(38+18)) E-+(17+8)) A4, "+(21+10/)4>"+(38+18/)E™;

A4,'. E"and E'" are Raman active, and £’ and 4," are infrared active.

Nanotubes with twofold axis cannot be fitted to Ceo cap.
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For large j we get very long molecules that must be studied as one-dimensional objects

where influence of caps can be neglected, i.e. properties of cylinder dominate.
The structure of cylinder of
TUBULE AXIS TN graphitic nanotube can be described
[5,6] by specifying two lattice points
on a graphite sheet: denoting a fixed
lattice point by O(0,0), another lattice
point by R(n;,n2), which will fold onto
O which uniquely defines the nanotube
structure, Fig. 2. Lattice vector

R(n,,n,)=ma+nb or the indexes
(n,n;) can be used to specify the
graphitic nanotube. We denote it by
T(n,n2) or T(h,[2)N; here N is the

. largest common divisor among #; and
Fig. 2. Graphite sheet and graphitic nanotubes. Vector R, de- vy, and m=1; ‘N, ny=l N. The /, and b

fines the nanotube helicity and diameter. Vector R, determine the helicity of the nanotube

indicates the direction of the nanotube, and |R| and N determines the rotational sym-
determines the length of a unit cell of the nanotube. metry of the nanotube; the nanotube
axis is the Cy axis. For a given vector

which determines the nanotube diameter, there is always another vector R, (m,,m,) so that

R
R,-R, =0, which determines the unit cell length. Parameters are confined by » 2 n, =0, and there

is no common divisor among m and m,. If a is the lattice constant of graphite, then the diameter D,
the unit cell length L, and the number of carbon atoms per unit cell N, are given by:

n?

2]

a 2 2
D="—=—\/n"+nn, +n,",
T V2
I:‘I_é :tz\/mz+mm +m,’
‘ m 1 L 2 2

N, =2(nym, —n,m)=2N(,m, —I,m,),

The chiral fiber thus generated has no distortion of bond angles other than that caused by the
cylindrical curvature of the fiber. The chiral angle & defined as the angle between R, and R(p,0) (p
is an integer) is given by:

0= arctan[—\/§n2 ! (2n, + n,)].

Consequently, there are only six definable angles for a fiber. Out of them, the limiting cases are the
zigzag direction (8-=0), T(1,0)N, where C-C bonds parallel to the nanotube axis exist, and the arm-
chair direction (=+30°), T(1,1)N, where C-C bonds normal to the nanotube axis exist - which only
fit to Cgg caps: T(1,1)5 fiber corresponds to cylinders of Cggrz9; and Cso+ag; (armchair cap) and
T(1,0)9 fiber corresponds to cylinder of fibers with threefold axis (zigzag cap).

The factor group of the one-dimensional space group of the graphitic nanotubes T(1,1)N and
T(1,0)N is isomorphic to the point group Dy, . There are two cases: N=even and N=odd. In the case
of even N, there is the point group Dama (E. 2(S20:,)% ™" (i=1,...n), 2(C2)? (i=1,...n-1), Ca, 2n)Cy,
(2n)oy). 8n elements of these groups are classified into 6 classes. There are 2n-1 double degenerated
irreducible representations. In the case of odd N, we have the point group Dgn+1ya (£ 2(Caper)”
G=1...n), 2r+tDC, i 2(S2an=1)® ) (j=1,...n), 2n+1)oy,). 4(2n+1) elements of these groups
are classified into 6 classes. There are 2n double degenerated irreducible representations.
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For nanotubes T(1,1)N and T(1,0)N, there are N-=4N particles per unit cell, and four un-
equivalent positions in unit cell. If we use character tables for isomorphic point groups Dyy, having
in mind that translational modes have E) and B, symmetries and the rotational mode has 4, symme-
try for even values of N, and that translational modes have £y, and 4, and the rotational mode has
A3, symmetry for odd N, vibrational modes have the following symmetries:

e T(1,1)N
for N=even y O 341424, +3B; +2B +5E, +6F,> +61F;3 +...+6EN
for N=odd y o 3A|g+2A2g +6E1g+6E2g +___+6E(N.1)/2g +341, 242, +5E,+6E,, +...+6E(N.1)/2 u

e T(,00N
for N—even =44, 124> +2B1+3B, +5E +6 L+ 6FE3 +...+6 LN,
for N==odd ZV:4A ig +A2g +6E1g +6E2g +.. .+6E(N_| gl 241,134, +5E,+6F7, +...+6E(N.1)/2 u-

TFor even N, A4,, E, and En., are Raman active and B; and £ are infrared active. For odd N,
Aig, Eg and E;, are Raman active and 4, and E), are infrared active. In the T(1,1)N graphitic
nanotubes there are 15 distinct Raman active modes and 7 distinct infrared active modes. In the
T(1,0)N graphitic nanotubes there are 16 Raman active modes and 8 distinct infrared active modes.
The symmetries of the Raman and infrared active modes are different.

The factor group of the one dimensional space group of the general chiral graphitic nano-
tube T(/1,{»)N is isomorphic to point group Cy . In the general chiral graphitic nanotube there are 15
distinct Raman frequencies (44+5E,+6E>) and 9 distinct infrared frequencies (44+5E4). Infrared
active modes are also Raman active modes.

3. VIBRATIONAL PROBLEM AND SYMMETRY CLASSIFICATION
OF GRAPHENE NANOTUBES

Infrared spectra of many polymers, including those with extended m-electron conjugation,
have been successfully interpreted on the basis of the following theoretical model: (a) a single chain
is considered to be infinite, extended and translationally periodic; (b) the electrons and the nuclei
are decoupled adiabatically; (¢) anharmonic effects are neglected, and (d) the force constants and
electro-optical parameters in the framework of natural (internal) vibrational coordinates (valence
bonds and angles, and out-of-plane dihedral and bond-plane angles) are assumed to be fairly local
(i.e. independent of the structural details except for the location and the type of the few nearest
neighbours), and hence can be transferred from small molecules of appropriate stereochemical
structure [8].

The invariant electro-optical parameters can be obtained by representing the polymeric
dipole moment in the form of vector sum, z = Z #,€, , where g, are some scalar parameters which

i
have a meaning of dipole moments of the valence bonds for fully additive bonds and effective
paramcters in other cases like here, and &, are the unit vectors of valence bonds. Intensity of a-th

normal mode is I, ~(&it/AD). . After differentiation one obtains that (Z/ A0), depends on
(du/a’lq/,), (&,‘ /dzﬁ) and /5 , where [,z are elements of the a.-th column of the orthogonal unitary

2
a

matrix L, (relating natural ¢ and normal vibrational coordinates Q: g=L,0, corresponding to the
form of normal vibration Q,. The matrix column lq(") is the eigenvector of the matrix vibrational

eigenproblem (TFU p —a)il)l;“) =0 for a dynamical vibrational matrix D=T,U,; w, are

fundamental vibrational frequencies of the polymer, T, is the matrix of polymeric kinematical
coefficients (dependent on the polymer geometry and mass distribution), and U, is the matrix of
polymeric force constants (dependent on the near-equilibrium charge density distribution). Due to
the translational symmetry of polymers, matrices 7, and U, have quasiperiodic forms, enabling
quasidiagonal form of the dynamical matrix. Force constants z; and electro-optical parameters
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represent a system of semiempirical parameters, which can be simultancously obtained from
experimental data for characteristic chemical groups of small molecules. If we have K identical
units, for one unit we have to solve k-dimensional vibrational problem and for a polymer of K units,
according to the structure of dynamical matrix D, we have to solve K vibrational problems of &-th
dimensionality each. We get K - k frequencies @ (=1,...k, s=1,..K). Frequencies are grouped into &
vibrational branches, frequencies s=1,..k belong to one branch. Influence of inter-segment
interaction on one vibration mode of a monomer depends on the form of that mode; dispersion of
the corresponding vibration branch of the polymer determines the strength of coupling.

Cylinders of carbon nanotubes can be also studied as periodic structures with screw axis
c ,- The nanotube axis coincides with the z-axis of coordinate system. The screw rotation around the

z-axis is by the angle

2 T n +2n,
—=2arctg ——— |,
p 2 n +nn, +ny

while the translation along the z-axis is by

«/gn]a
2\n] +nmn, +n

If one investigates carbon nanotubes in the above manner one must solve vibrational
problem for a small molecule, in this case Cgp, C70 , C75 or Cgp.

Considering the fiber formed along the fivefold axis we find that the three bond angles are
120.09°, 118.35° and 118.35°. This is quite differcnt from the Cgo casc where one of the angles is
108°. The fact that the bond angles in the Cgo-based fibers are so close to 120° implies that the hy-
brid orbitals are essentially sp* ones, while the radial orbital is essentially the p. orbital. Constants
influencing the out-of plane modes in graphite are responsible for radial phonon modes in Cgp-based
fibers, and would be shifted up in comparison with the corresponding modes in Cgp molecule, but
slightly down-shifted from a graphene sheet.

For fibers we expect wide vibrational branches.

Let w; be one of the characteristic frequencies of translational unit with characteristic inten-
sity /; dependant on clectro-optical parameters and /4 . I; can be separated into I, I and I;; projec-
tions. Intensities 7,/ of characteristic frequencies on the branch o s—1,...K, depend on the struc-
ture. For translational symmetry:

{=

§=even Ii(s) =0,
ST

s =odd I,(s):—2 I ctg’ ——— ),
K WK +1)

+1

IV is the maximal intensity on the branch, and mode will be observable in infrared spectrum, and
X,y projections can also be separated. In the case of screw axis C, along z, for I; the situation is the
same as for translational symmetry:

s=even I =0,

ST

s =odd I}‘)=i1 ctg? ————,
‘ 2K +1)

K+1"'
but for any s
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) 1 1 s

= 1, cos— |,

- AHK+D) ™ st P
2K+ p

I(‘\) — 1 Ir 1 sin ﬂ- ,

v MK+) vy s7m 771 p
2(K +1) p

ie. 10, 177 and P2+ are maximal intensities, where 7, is the intensity projection in

the xy plane. So we have dichroism. In unpolarized infrared spectra we have two bands: one at o
and one at @,*™") In polarized spectra we will see: w" for Ellz and PNV for E1z. This di-
chroism becomes more visible with greater branch dispersion.

4. CONCLUSION

Vibrational problem of graphene nanotubes as 1D objects, based on the symmetry classifi-
cation is analysed. Rich and characteristic spectral features of nanotubes revealed in this paper as
compared with Ceo and graphite show that infrared and Raman spectroscopy [7] may be specific and
informative spectral tool to analyse their nanometer-scale properties in terms of size and symmetry
dependent vibrational and clectronic states.
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